首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pore-scale imaging and modelling – digital core analysis – is becoming a routine service in the oil and gas industry, and has potential applications in contaminant transport and carbon dioxide storage. This paper briefly describes the underlying technology, namely imaging of the pore space of rocks from the nanometre scale upwards, coupled with a suite of different numerical techniques for simulating single and multiphase flow and transport through these images. Three example applications are then described, illustrating the range of scientific problems that can be tackled: dispersion in different rock samples that predicts the anomalous transport behaviour characteristic of highly heterogeneous carbonates; imaging of super-critical carbon dioxide in sandstone to demonstrate the possibility of capillary trapping in geological carbon storage; and the computation of relative permeability for mixed-wet carbonates and implications for oilfield waterflood recovery. The paper concludes by discussing limitations and challenges, including finding representative samples, imaging and simulating flow and transport in pore spaces over many orders of magnitude in size, the determination of wettability, and upscaling to the field scale. We conclude that pore-scale modelling is likely to become more widely applied in the oil industry including assessment of unconventional oil and gas resources. It has the potential to transform our understanding of multiphase flow processes, facilitating more efficient oil and gas recovery, effective contaminant removal and safe carbon dioxide storage.  相似文献   

2.
A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 µm, 6.2 µm, 8.3 µm and 10.2 µm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 µm) to lower resolutions (6.2 µm, 8.3 µm and 10.2 µm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.  相似文献   

3.
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.  相似文献   

4.
In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.  相似文献   

5.
Sizeable amounts of connected microporosity with various origins can have a profound effect on important petrophysical properties of a porous medium such as (absolute/relative) permeability and capillary pressure relationships. We construct pore-throat networks that incorporate both intergranular porosity and microporosity. The latter originates from two separate mechanisms: partial dissolution of grains and pore fillings (e.g. clay). We then use the reconstructed network models to estimate the medium flow properties. In this work, we develop unique network construction algorithms and simulate capillary pressure–saturation and relative permeability–saturation curves for cases with inhomogeneous distributions of pores and micropores. Furthermore, we provide a modeling framework for variable amounts of cement and connectivity of the intergranular porosity and quantifying the conditions under which microporosity dominates transport properties. In the extreme case of a disconnected inter-granular network due to cementation a range of saturations within which neither fluid phase is capable of flowing emerges. To our knowledge, this is the first flexible pore scale model, from first principles, to successfully approach this behavior observed in tight reservoirs.  相似文献   

6.
7.
Pore-scale forces have a significant effect on the macroscopic behaviour of multiphase flow through porous media. This paper studies the effect of these forces using a new volume-of-fluid based finite volume method developed for simulating two-phase flow directly on micro-CT images of porous media. An analytical analysis of the relationship between the pore-scale forces and the Darcy-scale pressure drops is presented. We use this analysis to propose unambiguous definitions of Darcy-scale viscous pressure drops as the rate of energy dissipation per unit flow rate of each phase, and then use them to obtain the relative permeability curves. We show that this definition is consistent with conventional laboratory/field measurements by comparing our predictions with experimental relative permeability. We present single and two-phase flow simulations for primary oil injection followed by water injection on a sandpack and a Berea sandstone. The two-phase flow simulations are presented at different capillary numbers which cover the transition from capillary fingering at low capillary numbers to a more viscous fingering displacement pattern at higher capillary numbers, and the effect of capillary number on the relative permeability curves is investigated. Overall, this paper presents a new finite volume-based methodology for the detailed analysis of two-phase flow directly on micro-CT images of porous media and upscaling of the results to the Darcy scale.  相似文献   

8.
High resolution images acquired from X-ray μ-CT are able to map the internal structure of porous media on which multiphase flow properties can be computed. While the resolution of a few micrometers may be sufficient for capturing the pore space of many sandstones, most carbonates exhibit a large amount of microporosity; pores which are below the image resolution and are not resolved at specific resolution. Neglecting the effect of micropores on fluid flow and transport properties of these rocks can cause erroneous results in particular at partial saturations. Current image-based pore scale models typically only consider macropores for simulating fluid flow. In this paper, we quantify the effect of microporosity on the effective permeability of the wetting phase for heterogeneous model structures with varying amount of micro-to-macro porosity. A multi-scale numerical approach is proposed to couple an average effect of micropores with an explicit representation of macropores. The Brinkman equation is solved using a lattice Boltzmann formulation to facilitate the coupling of Darcy and Stokes equations in micropores and macropores, respectively. The results show good agreement between the fine scale solution and the results of the upscaled models in which microporous regions are homogenised. The paper analyses in particular the choice of the momentum sink parameter at low wetting phase saturations. It is shown that this parameter can be found using either a flux-based calculation of permeability of microporous regions or chosen purely on the basis of the effective permeability of these regions.  相似文献   

9.
We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe – Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.  相似文献   

10.
The relation between oil and water in reservoirs with low and ultra-low permeability is very complicated. Gravitational separation of oil and water is not obvious. Normal reservoirs are located in depression and structural high spot, oil and water transitions are located in their middle. Stagnation is the key fact of oil-forming reservoir in the axis of a syncline based on the research of oil, gas and water migration manner, dynamics and non-Darcy flow in the Songliao basin. In low and ultra-low permeable reservoir, gas and water migrate easily through pore throats because their molecules are generally smaller than the pore throats; but the minimum diameter of oil droplets is larger than pore throats and they must be deformed to go through. Thus, gas and water migrate in advance of oil, and oil droplets remain behind. Pressure differential and the buoyancy force in a syncline reservoir are a main fluid driving force; and capillary force is the main resistance to flow. When the dynamics force is less than resistance, oil is immobile. When the buoyancy force is less than the capillary force, a gravitational separation of oil and water does not occur. The reservoir in the mature source rock of a syncline area with the low and ul- tra-low permeability belongs to an unconventional petroleum reservoir.  相似文献   

11.
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier–Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy’s law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.  相似文献   

12.
We present the results of a pore-scale experimental study of residual trapping in consolidated sandstone and carbonate rock samples under confining stress. We investigate how the changes in wetting phase flow rate impacts pore-scale distribution of fluids during imbibition in natural, water-wet porous media. We systematically study pore-scale trapping of the nonwetting phase as well as size and distribution of its disconnected globules. Seven sets of drainage-imbibition experiments were performed with brine and oil as the wetting and nonwetting phases, respectively. We utilized a two-phase miniature core-flooding apparatus integrated with an X-ray microtomography system to examine pore-scale fluid distributions in small Bentheimer sandstone (D = 4.9 mm and L = 13 mm) and Gambier limestone (D = 4.4 mm and L = 75 mm) core samples. The results show that with increase in capillary number, the residual oil saturation at the end of the imbibition reduces from 0.46 to 0.20 in Bemtheimer sandstone and from 0.46 to 0.28 in Gambier limestone. We use pore-scale displacement mechanisms, in-situ wettability characteristics, and pore size distribution information to explain the observed capillary desaturation trends. The reduction was believed to be caused by alteration of the order in which pore-scale displacements took place during imbibition. Furthermore, increase in capillary number produced significantly different pore-scale fluid distributions during imbibition. We explored the pore fluid occupancies and studied size and distribution of the trapped oil clusters during different imbibition experiments. The results clearly show that as the capillary number increases, imbibition produces smaller trapped oil globules. In other words, the volume of individual trapped oil globules decreased at higher brine flow rates. Finally, we observed that the pore space in the limestone sample was considerably altered through matrix dissolution at extremely high brine flow rates. This increased the sample porosity from 44% to 62% and permeability from 7.3 D to 80 D. Imbibition in the altered pore space produced lower residual oil saturation (from 0.28 to 0.22) and significantly different distribution of trapped oil globules.  相似文献   

13.
14.
The pore throats in a porous medium control permeability, drainage, and straining through their pore scale geometry and through the way they are connected via pore bodies on the macroscale. Likewise, imbibition is controlled through the geometry of the pore bodies (pore scale) and through the way the pore bodies are connected via pore throats on the macroscale. In an effort to account for both scales at the same time we recently introduced an image-based model for pore spaces that consists of two parts related by duality: (1) a decomposition of a polyhedral pore space into polyhedral pore bodies separated by polygonal pore throats and (2) a polygonal pore network that is homotopy equivalent to the pore space. In this paper we stick to the dual concept while amending the definition of the pore throats and, as a consequence, the other elements of the dual model. Formerly, the pore throats consisted of single two-dimensional Delaunay cells, while they now usually consist of more than one two-dimensional Delaunay cell and extend all the way into the narrowing ends of the pore channel cross sections. This is the first reason for naming the amended dual model “tight”. The second reason is that the formation of the pore throats is now guided by an objective function that always attains its global optimum (tight optimization). At the end of the paper we report on simulations of drainage performed on tight dual models derived from simulated sphere packings and 3D gray-level images. The C-code for the generation of the tight dual model and the simulation of drainage is publicly available at https://jshare.johnshopkins.edu/mhilper1/public_html/tdm.html.  相似文献   

15.
16.
17.
含裂缝多孔介质渗透率预测是非常规油气资源勘探开发的一个紧迫问题.现有多孔介质岩石物理模型通常利用圆形孔管模拟宏观岩石孔隙空间,难以定量描述软孔隙/裂缝在压力作用下的闭合情况,缺乏裂缝/孔隙间流量交换的连通机制.本文提出含三维裂缝/软孔隙网络多孔介质模型,将储层岩石裂缝/软孔隙表示为椭圆截面微管,建立了周期性压力作用下微...  相似文献   

18.
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier–Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid–fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.  相似文献   

19.
20.
A quasi-static scheme based on pore space spatial statistics is presented to simulate pore-scale two-phase capillary-dominant displacement processes. The algorithm is coupled with computational fluid dynamics in order to evaluate saturation functions. Wettability heterogeneity in partial and fractional/mixed-wet media is implemented using a contact angle map. The simulation process is pixel-wised and performed directly on binary images. Bypassing and snap-off are tackled as non-wetting phase trapping mechanisms. Post-processing results include residual saturations, effective permeability and capillary pressure curves for drainage and imbibition scenarios. The primary advantages of the proposed workflow are eliminating pore space skeletisation/ discretization, superior time efficiency and minimal numerical drawbacks when compared to other direct or network-based simulation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号