首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Siruvani watershed with a surface area of 205.54 km2 (20,554 hectare), forming a part of the Western Ghats in Attapady valley, Kerala, was chosen for testing RUSLE methodology in conjunction with remote sensing and GIS for soil loss prediction and identifying areas with high erosion potential. The RUSLE factors (R, K, LS, C and P) were computed from local rainfall, topographic, soil classification and remote sensing data. This study proved that the integration of soil erosion models with GIS and remote sensing is a simple and effective tool for mapping and quantifying areas and rates of soil erosion for the development of better soil conservation plans. The resultant map of annual soil erosion shows a maximum soil loss of 14.917 t h−1 year−1 and the computations suggest that about only 5.76% (1,184 hectares) of the area comes under the severe soil erosion zone followed by the high-erosion zone (11.50% of the total area). The dominant high soil erosion areas are located in the central and southern portion of the watershed and it is attributed to the shifting cultivation, and forest degradation along with the combined effect of K, LS and C factor. The RUSLE model in combination with GIS and remote sensing techniques also enables the assessment of pixel based soil erosion rate.  相似文献   

2.
Temporal change in the glacier coverage is analyzed for the period between 1962 and 2003 in Parbati valley, Himachal Pradesh. It is observed that the total glacier cover has been decreased by 17% ranging between 8 and 100% for individual glacier. The pattern of de-glaciation shows a high degree of shrinkage in outer zone of Parbati valley, while least shrinkage is observed in the inner valley. The present study is conducted to establish relationship between glacio-geomorphic parameters and glaciers shrinkage pattern to predict the future glacier cover in warming scenario. A systematic change is observed for glacio-geomorphic parameters associated with temporal change in glacier cover. It is observed that mean and minimum elevation, slope, relief and duration of insolation have changed substantially. Maximum elevation, plan/profile curvatures and aspect have shown less change from 1962 to 2003. A correlation matrix between glacio-geomorphic parameters for glaciers between 1962 and 2003 shows that the recent glaciers are much more controlled by terrain characteristics than that in the recent past.  相似文献   

3.
Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a prime concern. Now, a reliable integration of groundwater resources for water-allocation planning is needed to prevent aquifer overexploitation. Within the 11,000-km2 Musi River sub-basin (South India), human interventions have dramatically impacted the hard-rock aquifers, with a water-table drop of 0.18 m/a over the period 1989–2004. A fully distributed numerical groundwater model was successfully implemented at catchment scale. The model allowed two distinct conceptualizations of groundwater availability to be quantified: one that was linked to easily quantified fluxes, and one that was more expressive of long-term sustainability by taking account of all sources and sinks. Simulations showed that the latter implied 13 % less available groundwater for exploitation than did the former. In turn, this has major implications for the existing water-allocation modelling framework used to guide decision makers and water-resources managers worldwide.  相似文献   

4.
Landslides are among the most costly and damaging natural hazards in mountainous regions, triggered mainly under the influence of earthquakes and/or rainfall. In the present study, Landslide Hazard Zonation (LHZ) of Dikrong river basin of Arunachal Pradesh was carried out using Remote Sensing and Geographic Information System (GIS). Various thematic layers namely slope, photo-lineament buffer, thrust buffer, relative relief map, geology and land use / land cover map were generated using remote sensing data and GIS. The weighting-rating system based on the relative importance of various causative factors as derived from remotely sensed data and other thematic maps were used for the LHZ. The different classes of thematic layers were assigned the corresponding rating value as attribute information in the GIS and an “attribute map” was generated for each data layer. Each class within a thematic layer was assigned an ordinal rating from 0 to 9. Summation of these attribute maps were then multiplied by the corresponding weights to yield the Landslide Hazard Index (LHI) for each cell. Using trial and error method the weight-rating values have been re-adjusted. The LHI threshold values used were: 142, 165, 189 and 216. A LHZ map was prepared showing the five zones, namely “very low hazard”, “low hazard”, “moderate hazard”, “high hazard” and “very high hazard” by using the “slicing” operation.  相似文献   

5.
In this article, the results of a study aimed to assess the landslide susceptibility in the Calaggio Torrent basin (Campanian Apennines, southern Italy) are presented. The landslide susceptibility has been assessed using two bivariate-statistics-based methods in a GIS environment. In the first method, widely used in the existing literature, weighting values (Wi) have been calculated for each class of the selected causal factors (lithology, land-use, slope angle and aspect) taking into account the landslide density (detachment zones + landslide body) within each class. In the second method, which is a modification of the first method, only the landslide detachment zone (LDZ) density has been taken into account to calculate the weighting values. This latter method is probably characterized by a major geomorphological coherence. In fact, differently from the landslide bodies, LDZ must necessarily occur in geoenvironmental classes prone to failure. Thus, the calculated Wi seem to be more reliable in estimating the propensity of a given class to generate failure. The thematic maps have been reclassified on the basis of the calculated Wi and then overlaid, with the purpose to produce landslide susceptibility maps. The used methods converge both in indicating that most part of the study area is characterized by a high–very high landslide susceptibility and in the location and extent of the low-susceptible areas. However, an increase of both the high–very high and moderate–high susceptible areas occurs in using the second method. Both the produced susceptibility maps have been compared with the geomorphological map, highlighting an excellent coherence which is higher using method-2. In both methods, the percentage of each susceptibility class affected by landslides increases with the degree of susceptibility, as expected. However, the percentage at issue in the lowest susceptibility class obtained using method-2, even if low, is higher than that obtained using method-1. This suggests that method-2, notwithstanding its major geomorphological coherence, probably still needs further refinements.  相似文献   

6.
This study pertains to prediction of liquefaction susceptibility of unconsolidated sediments using artificial neural network (ANN) as a prediction model. The backpropagation neural network was trained, tested, and validated with 23 datasets comprising parameters such as cyclic resistance ratio (CRR), cyclic stress ratio (CSR), liquefaction severity index (LSI), and liquefaction sensitivity index (LSeI). The network was also trained to predict the CRR values from LSI, LSeI, and CSR values. The predicted results were comparable with the field data on CRR and liquefaction severity. Thus, this study indicates the potentiality of the ANN technique in mapping the liquefaction susceptibility of the area.  相似文献   

7.
This paper aims to assess the risk of natural and anthropogenic hazards for cultural heritage in Cyprus by integrating multi-temporal GIS and earth observation analysis, in the area of Paphos District. The work presented here attends to re-evaluate previous results from earth observations and GIS analysis and go a step forward targeting more reliable outcomes for cultural heritage management. The scope of the paper was to develop a more accurate methodology for risk assessment against natural and anthropogenic hazards (e.g., soil erosion; urban expansion), based on homogeneous clustering of the monuments under consideration. The accomplished assessment approach, being lopsided and generic, cannot be applied across the board and undistractedly for cultural heritage management of all types of monuments of the district. Instead, the proposed clustering of monuments based on a variety of parameters is taking into consideration characteristics of their immediate environment, resulting rational local-based outcomes more useful for monuments and sites safeguarding and for prevention measurements. For each one of the five clusters of monuments located in the Paphos District, an analytical hierarchy process (AHP) method was followed in order to address the individual and unique characteristics of the monuments and sites within the same cluster area. Subsequently, the weight factors from these clusters were interpolated to the whole district, prior to the application of the overall AHP risk assessment. Ultimately, the results were compared with the overall AHP method applied for the entire Paphos District, indicating that the proposed methodology can be more accurate and realistic for the different groups of the monuments.  相似文献   

8.
Human activities and climate changes significantly affect our environment, altering hydrologic cycles. Several environmental, social, political, and economical factors contribute to land transformation as well as environmental changes. This study first identified the most critical factors that affect the environment in Al-Anbar city including population growth, urbanization expansion, bare land expansion, and reduction in vegetation cover. The combination of remote sensing data and fuzzy analytic hierarch process (Fuzzy AHP) enabled exploration of land transformations and environmental changes in the study area during 2001 to 2013 in terms of long and short-term changes. Results of land transformation showed that the major changes in water bodies increased radically (94 %) from the long-term change in 2001 to 2013 because of water policies. In addition, the urban class expanded in two short-term periods (2001–2007 and 2007–2013), representing net changes of 46 and 60 %, respectively. Finally, barren land showed 25 % reduction in the first period because of the huge expansion of water in the lake; a small percentage of growth gain was observed in the second period. Based on the land transformation results, the environmental degradation assessment showed that the study area generally had high level of environmental degradation. The degradation was mostly in the center and the north part of the study area. This study suggested for further studies to include other factors that also responsible for environmental degradation such as water quality and desertification threatening.  相似文献   

9.
The quality of groundwater was assessed by determining the physicochemical parameters (pH, EC, TDS and TH) and major ions concentration (HCO3, Cl, FSO4, Ca, Mg, Na and K) around Dindigul district, Tamil Nadu, India. The groundwater samples were collected from 59 bore wells covering the entire study area and analyzed using standard methods. The GIS mapping technique were adopted to highlight the spatial distribution pattern of physicochemical parameters and major ion concentration in the groundwater. Gibbs diagram reveals that the source of major ions is predominantly derived from rock–water interaction and evaporation dominance process. The salt combinations of the aquifers are dominated by CaHCO3, mixed CaMgCl, mixed CaMgHCO3 and CaCl facies type due to leaching and dissolution process of weathered rocks. The Canadian Council of Ministers of Environment Water Quality Index (CCMEWQI) suggests that most of the groundwater quality falls under good to marginal category. The statistical analysis indicates that the presence of major ions and physicochemical parameters are chiefly controlled by rock–water interaction and residence time of the groundwater. However, the major nutrient like nitrite in the groundwater probably comes from anthropogenic process. Based on the groundwater quality standards, majority of the samples are suitable for drinking purposes except few in the study area.  相似文献   

10.
Watershed prioritization is one of the most important processes in natural resource management system especially in areas of sustainable watershed development and planning. Morphometric characteristics are the viable entity to understand the hydrological behavior of the subwatershed. For prioritization of subwatershed, morphometric analysis was utilized by using the linear, areal, and relief aspects of the drainage basin. In this context, remote sensing and GIS has been proved to be an efficient tool to identify the morphological features. The Survey of India (SOI) topographical maps, satellite data IRS-LISS III, and Cartosat DEM data were utilized to understand the drainage pattern and also for prioritization of subwatershed areas. The prioritization of subwatershed has been attempted using novel and quantitative approaches based on compound parameter ranking for soil erosion. Lower compound factors were chosen as the most feasible for soil erosion. Based on the observation, eight subwatersheds with a higher degree of the slope were severely prone to soil erosion and remaining 21 subwatersheds occur in low-lying areas that can be developed as sustainable watersheds. The identified subwatershed requires immediate soil remediation and water conservation measures for efficient watershed planning and management. The proposed study might be helpful for resource planners, government agencies, private sectors, and other stake holders to take up soil conservation measures and fixation of water-harvesting structures for better decision making.  相似文献   

11.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   

12.
Morphometric analysis of a watershed of South India using SRTM data and GIS   总被引:3,自引:0,他引:3  
An attempt has been made to study drainage morphometry and its influence on hydrology of Wailapalli watershed, South India. For detailed study we used Shuttle Radar Topographic Mission (SRTM) data for preparing Digital Elevation Model (DEM), aspect grid and slope maps, Geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The lower order streams are mostly dominating the basin. The development of stream segments in the basin area is more or less affected by rainfall. The mean Rb of the entire basin is 3.89 which indicate that the drainage pattern is not much influenced by geological structures. Relief ratio indicates that the discharge capability of these watersheds is very high and the groundwater potential is meager. These studies are very useful for planning rainwater harvesting and watershed management.  相似文献   

13.
The fossil record of mid to late Permian terrestrial vertebrates in the South African Karoo Basin is regarded as the most abundant and diverse in the world. Despite the extensive research on body fossils, to-date the vertebrate footprint sites have not been subjected to an anatomy-consistent ichnotaxonomic investigation. Here we present a comprehensive ichnotaxonomic revision of Permian-Early Triassic tracksites in the main Karoo Basin of South Africa. Furthermore, a track-trackmaker correlation for all Permian synapsid groups is provided for the first time, based on the analysis of the functional morphology of potential producers. The following ichnotaxa and their proposed trackmakers are recognized: Brontopus giganteus (dinocephalians), cf. Capitosauroides isp. (therocephalians), cf. Dicynodontipus isp. (cynodonts), Dolomitipes accordii (small dicynodonts), Dolomitipes icelsi n. comb. (large dicynodonts), Karoopes gansfonteinensis n. igen. n. isp. (gorgonopsids), Procolophonichnium nopcsai (procolophonids) and Rhynchosauroides isp. (non-archosauriform diapsids). Three different footprint assemblages (FA I–III) are proposed for footprint biostratigraphy: FA I (lower Tapinocephalus AZ), a Guadalupian assemblage dominated by dinocephalian tracks; FA II (topmost Tapinocephalus-Cistecephalus AZ), a latest Guadalupian-Wuchiapingian assemblage dominated by gorgonopsid and dicynodont tracks in association with subordinate therocephalian tracks and FA III (lower Lystrosaurus AZ), an Induan assemblage with dicynodont, cynodont, procolophonid and diapsid tracks. The lower FA II includes the earliest ichnofauna with Lopingian affinity all over the world (topmost Tapinocephalus-Pristerognathus AZ, ~260–259 Ma) and could indicate an early recovery phase after the end-Guadalupian mass extinction, because of the high abundance of large gorgonopsid tracks and absence of dinocephalian tracks. This footprint record may also predate the body fossil record, suggesting an earlier gorgonopsid radiation. FA III represents the earliest and most complete post end-Permian extinction ichnofauna, which includes an early phase of abundant small dicynodont tracks, potentially indicating a stressed post-event community. Nevertheless, this ichnofauna looks very similar to pre-extinction ichnofaunas from Europe, in agreement with the skeletal record at the Daptocephalus-Lystrosaurus AZ transition.  相似文献   

14.
15.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

16.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

17.
Land and water resources development plans are generally adopted at watershed level. Delineation of watersheds and their prioritization within large river basins requires host of terrain parameters to be studied and analysed. Chopan watershed in Central India has been studied for sub-watershed delineation and prioritization based on drainage morphometry, land use/land cover and sediment yield index analysis using remote sensing and GIS techniques. The watershed was demarcated into five sub-watersheds on the basis of drainage flow directions, contour value, slope, elevation. Geocoded satellite data of 1989 and 2001 on 1:50 000 scale were visually interpreted to prepare land use/land cover and drainage maps which were later digitized using Arcview/ArcGIS. Linear and shape aspects of the sub-watersheds were computed and used for prioritization. The results show widespread variation in drainage characteristics, land cover changes and sediment yield rates across sub-watersheds. On the basis of morphometric, land use/land cover change and sediment yield index, sub-watersheds were grouped into low, medium and high priority. A correlation of results show that SW1 and SW5 are common sub-watersheds falling under high and low priority based on morphometric, land use change analysis and SYI. The priority list of sub-watersheds will be crucial for decision making and implementation of land and water resource conservation projects.  相似文献   

18.
In the management of water resources, quality of water is just as important as its quantity. In order to know the quality and/or suitability of groundwater for domestic and irrigation in upper Gunjanaeru River basin, 51 water samples in post-monsoon and 46 in pre-monsoon seasons were collected and analyzed for various parameters. Geological units are alluvium, shale and quartzite. Based on the analytical results, chemical indices like percent sodium, sodium adsorption ratio, residual sodium carbonate, permeability index (PI) and chloroalkaline indices were calculated. The pre-monsoon waters have low sodium hazard as compared to post-monsoon season. Residual sodium carbonate values revealed that one sample is not suitable in both the seasons for irrigation purposes due the occurrence of alkaline white patches and low permeability of the soil. PI values of both seasons revealed that the ground waters are generally suitable for irrigation. The positive values of Chloroalkaline indices in post-monsoon (80%) and in pre-monsoon (59%) water samples indicate absence of base-exchange reaction (chloroalkaline disequilibrium), and remaining samples of negative values of the ratios indicate base-exchange reaction (chloroalkaline equilibrium). Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for both seasons indicates that most of waters are Ca–Mg–HCO3 type. Assessment of water samples from various methods indicated that majority of the water samples in both seasons are suitable for different purposes except at Yanadipalle (sample no. 8) that requires precautionary measures. The overall quality of groundwater in post-monsoon season in all chemical constituents is on the higher side due to dissolution of surface pollutants during the infiltration and percolation of rainwater and at few places due to agricultural and domestic activities.  相似文献   

19.
A method based on concept of fuzzy set theory has been used for decision-making for the assessment of physico-chemical quality of groundwater for drinking purposes. Conventional methods for water quality assessment do not consider the uncertainties involved either in measurement of water quality parameters or in the limits provided by the regulatory bodies. Fuzzy synthetic evaluation model gives the certainty levels for the quality class of the water based on the prescribed limit of various regulatory bodies and opinion of the experts from the field of drinking water quality. In this paper, application of fuzzy rule based optimization model is illustrated with twenty groundwater samples from Sohna town of Gurgaon district of Southern Haryana, India. These samples were analysed for 15 different physico-chemical parameters, out of them nine important parameters were used for the quality assessment using fuzzy synthetic evaluation approach. From this study, it has been concluded that all the water samples are in acceptable category whose certainty level ranges from 44 to 100%. Water from these sources can be used for the drinking purposes if alternate water source is not available without any health concern on the basis of physico-chemical characteristics.  相似文献   

20.
Wadi Wurayah area is one of the major wadis originating and running on the Oman Mountains and drains into the Oman Gulf. These wadis in general and Wadi Wurayah in particular are characterized with a rich diversity of rare and mountainous and freshwater habitats and species. These wadis contain unequal, representative, and sensitive areas of the dry lands ecosystem with natural, outstanding landscapes and cultural heritage, while the socioeconomic situation indicates that it has enough socioeconomic infrastructures to develop new alternatives ecologically and economically sustainable. As most of the United Arab Emirates and the region, the study area is undergoing dramatic changes linked to economic diversification and promotion of tourism. Established under the UNESCO’s Man and the Biosphere Program, Wurayah Biosphere Reserve represents protected areas intended to demonstrate well-balanced relationship between conservation of biodiversity and an appropriate local development. The main objectives of this study are to develop an environmental information system to understand the dynamics of human activities associated to land use in the study area, highlight the threats to the environment, educate people about the basic environmental issues and positive traditional practices, and promote tourism. Based on the gained results, the concept of biosphere reserve as a model is to implement ideas of sustainable land use in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号