首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tectonostratigraphy of the exposed Silurian deposits in Arabia   总被引:1,自引:1,他引:0  
Exposed Silurian deposits in Arabia are represented by the Qalibah Group, the Qusaiba and Sharawra formations. The Qusaiba Formation is composed of dark-gray claystones and siltstones. It is disconformably underlain by the Late Ordovician–Early Silurian? Uqlah Formation or unconformably underlain by the Late Ordovician Zarqa or Sarah formations. It is disconformably overlain by the Sharawra Formation. The Early Rhuddanian basal “hot shale” of the Qusaiba Formation represents the early stage of the early Silurian marine transgression over the Gondwana broad shelf. It is a regional marker used to outline the structural configuration of the area prior to the Silurian time. The Sharawra Formation is composed of siltstone and sandstone. It is unconformably overlain by the Late Silurian?–Early Devonian Tawil Formation. Silurian deposits show a pronounced thinning from 992 m in the Tabuk area in the west and are completely missing in the northern part of the Qusayba depression in the east. The thinning of the Qusaiba shale and Sharawra sandstone is interpreted as due to depositional and erosional features, respectively. Thinning and distribution of the Early Rhuddanian shale “hot shale” is depositional which is affected by preexisting Late Ordovician paleo-highs in central Arabia. Thinning of the Sharawra sandstones is erosional which is attributed to Late Silurian tectonic movements synchronous with the Acadian uplift phase of the Caledonian tectonic movements. The main structural elements in central Arabia are represented by the north–south trending and northerly plunging Hail arch and to a much lesser extent the northwest–southeast trending and southerly plunging Qusayba high.  相似文献   

2.
Paleozoic successions in Saudi Arabia are exposed around and bordering the south, north, and northeastern edge of the Arabian shield. They are represented by the Wajid group in the south and by the Taymah, Tabuk, Qalibah, Huj, and Buraydah groups in the north and northeast. The Wajid group includes Dibsiyah, Sanamah, Khusayyan, and Juwayl formations. The Taymah group includes Siq, Amai’er, Quweira, Saq, and Qasim formations. The Tabuk group includes Zarqa, Sara, and Hawban formations. The Qalibah group includes Baq’a, Qusaiba, and Sharawra formations. The Huj group includes Tawil, Jauf, and Jubah formations. The Buraydah group includes Berwath, Unayzah, and Khuff formations. The Wajid group form one block in the south and the other groups form another block in the north, and they can be correlated. There are similarities between the northern belt which consists of the Cambro-Ordovician formations of the Tayma and Tabuk groups and the southern belt which consists of the Dibsiyah and Sanama formations of the Wajid group. Similarities include sandstone composition, sedimentary environment, paleocurrent directions, unconformities, tectonic events, and influence of Gondwana glaciations. These formations and probably some or all the rest of the Paleozoic formations used to form one block but later separated after erosion caused by gradual tectonic growth, uplift, and prominence of the Arabian shield. During early Paleozoic time, the process started by poststabilization then sedimentation and at a later stage the growth and uplift of the shield occurred gradually. Growth of shields is a fact and it is the only way to explain the exposure of the Wajid sandstone on top of the highest mountain of the shield which exceeds 3,000 m in As Sawdah in Asir area in southwestern Saudi Arabia. The sandstone sediments of these outcrops were deposited on a low lying basin before been raised to this elevation.  相似文献   

3.
Four recently discovered glacio-fluvial paleovalleys in southeast Jordan and northwest Saudi Arabia are described for the first time. The paleovalleys formed as a result of glacial erosion by series of sub-parallel valley glaciers during the Late Ordovician (Hirnantian) southern hemisphere glaciation on the Arabian Plate. The southwest-northeast orientation of the paleovalleys, Proterozoic erratic clasts and paleocurrent vectors indicate the advance of glaciers and subsequent glacio-fluvial siliciclastics emanating from a paleo-ice sheet located to the south on the Arabian Shield. U-shaped, paleovalley cross-sectional morphologies and gently inclined longitudinal profiles indicate initial glacial erosion of the ‘finger-like’ paleovalleys, probably as wet-based valley glaciers, eroded up to 250 m depth into Late Ordovician marine bedrock formations. Paleovalley-fill sequences comprise a tripartite upwards succession: (a) basal sandstone-dominated tillite with well-rounded, grooved and striated granitoid and metamorphic basement clasts derived from the Proterozoic Arabian Shield together with locally derived, rounded and elongate boulders eroded from the local bedrock at the margins of the paleovalleys (Retrogradational Lowstand Sequence); (b) green chloritic siltstone (Zarqa Formation) deposited during a progradational sea-level rise with marine influence (Transgressive Sequence); (c) coarse-grained, trough cross-bedded sandstone (Sarah Formation) attributed to progradational fluvial sedimentation as glacial outwash. Rapid sea-level rise during latest Hirnantian to Early Llandovery time resulted in marine flooding of the glacio-fluvial alluvial plain and deposition of organic-rich mudstones representing transgressive and high-stand sequences.  相似文献   

4.
The Late Precambrian through Silurian tectonic evolution of east-central South China is modeled in terms of a history of rift, drift, and collision during Late Proterozoic, Sinian, and Late Ordovician-Early Silurian times, respectively. We review the regional stratigraphie development of this area, focusing particularly on north-central Hunan province, and argue from our observations and those of others that the Jiangnan, Xuefeng, and Jiuling ranges of the Nanling realm approximately demarcate the paleogeographic transition in Sinian to Ordovician times of shelf to off-shelf environments developed along a passive-type continental margin that started rifting in the pre-Sinian Late Proterozoic. The rift sequence is recorded by the Penhsi (= Banxi) Group, which rests unconformably above an older-presumed Middle to early Late Proterozoic-low-grade metamorphic basement. The Penhsi varies markedly in thickness but is everywhere characterized by nonmarine to paralic clastic facies. The Penhsi conformably to disconformably underlies the Sinian through Lower Paleozoic sequence throughout central South China, which developed along an E-facing, passive-type continental margin. This passive-type margin was destroyed by the Guangxian Orogeny. The Guangxian Orogeny was marked initially by the northwestward progradation of deep-marine turbidites of Late Ordovician age in the most off-shelf regions, progressing to earliest Silurian age on the shelf to the northwest. Folding and concomitant thrusting in the off-shelf regions, and subsequent erosion beneath the unconformably overlying nonmarine Middle Devonian strata, truncate the stratigraphie record of the orogen within the Early Silurian. Farther northwest, in regions undisturbed by the Guangxian Orogeny, Silurian foreland-basin sedimentation included the entire Lower Silurian succession, which grades rapidly upward from basinal to inter-tonguing marine and nonmarine elastics. This reflects a change from flexurally induced subsidence first outpacing local sedimentation, followed by sedimentation outstripping and then keeping pace with subsidence.  相似文献   

5.
The Late Ordovician glacio-fluvial Sarah Formation is an important tight gas reservoir target in Saudi Arabia. This study uses statistical methods to characterize the petrophysical heterogeneity of the paleovalleys of the Sarah Formation that crop out in central Saudi Arabia. Four paleovalleys were studied: Bukayriyah, Hanadir, Sarah, and Khanasir Sarah. Several lithofacies were identified in each that vary in texture, porosity, permeability, and facies abundance that reflect periods of ice advance and retreat. The heterogeneity analysis is based on three statistical measures, namely, the coefficient of variation, the Dykstra-Parsons coefficient, and the Lorenz coefficient. The coefficient of variation values is in the 0.62–1.94 range, indicating an extremely heterogeneous distribution. The Dykstra-Parsons coefficient values are in the 0.56–0.88 range, suggesting very high to extremely high heterogeneity in the reservoirs. The Lorenz coefficient correlates well with the Dykstra-Parsons coefficient for paleovalleys of the Sarah Formation. The heterogeneity parameters studied here indicate that the outcrops of Sarah Formation paleovalleys represent heterogeneous to very heterogeneous reservoirs, which may be attributed to complex depositional and diagenetic variations that have affected the porosity and permeability distribution.  相似文献   

6.
《Sedimentology》2018,65(3):851-876
The Sarah Formation is a glaciogenic sedimentary unit deposited along the Gondwana margin during the latest Ordovician ice age and represents a major hydrocarbon reservoir in northern Saudi Arabia. Large‐scale glacial palaeo‐valleys cut into the Qasim Formation and were infilled by the Sarah Formation. Post‐glacial transgression in the earliest Silurian resulted in the deposition of the Qusaiba Shale Member and associated organic‐rich basal source rocks, which cap the Sarah Formation infilled palaeo‐valleys. This unique setting makes the Sarah Formation an important emerging exploration target in Saudi Arabia. This study focuses on the facies and depositional architecture in seismic‐scale outcrops of the Sarah Formation in north‐western Saudi Arabia. The Rahal Dhab palaeo‐valley provides a 100 km long dip‐oriented cross‐section which has been covered by 24 vertical sections, sedimentary architectural analyses at metre to kilometre scale and by three cored shallow boreholes. In the Rahal Dhab palaeo‐valley, the Sarah Formation was deposited in a proglacial setting that ranged from marginal marine to offshore prodelta and is made up of three units: (i) the Sarah Sandstone; (ii) the Sarah Shale; and (iii) the Uqlah Member. This study shows the relationships between these three units and architectural controls on reservoir quality in this system. This paper contributes to the regional understanding of the Sarah Formation, and the new depositional model of the Rahal Dhab palaeo‐valley provides an outcrop‐reservoir analogue for hydrocarbon exploration in adjacent areas.  相似文献   

7.
东秦岭中部奥陶系-志留系界线地层及腕足动物群   总被引:1,自引:0,他引:1  
许汉奎 《地层学杂志》1996,20(3):165-174
东秦岭中部晚奥陶世和早志留世地层分布较广,化石较丰富,尤其是腕足类,分为寺岗组、石燕河组、刘家坡组和张湾组。曾庆銮等(1993)根据腕足类及其群落的更替,把石燕河组和刘家坡组归於早志留世,因而引起较大争论。本文据岩性将寺岗组和石燕河组分别改称为石燕河组下段和上段,并据腕足类化石认为石燕河组和刘家坡组应归於晚奥陶世、张湾组为早志留世;另据上述地层生物群落的特征及群落的更替,认为从石燕河组到刘家坡组,以及刘家坡组至张湾组恰好反映了全球冰期引起的晚奥陶世海退和早志留世冰期结束引起的海侵,故本区奥陶系-志留系界线宜划在刘家坡组和张湾组之间。  相似文献   

8.
塔里木板块西北缘沉积地层的研究,对于恢复南天山洋的演化过程有重要意义。文中利用岩石地球化学的手段,对新疆阿合奇地区志留系砂岩进行物源和构造背景分析。研究表明,阿合奇地区志留系砂岩样品的SiO2含量范围变化较大,为61.97%~93.91%,平均含量为76.76%;稀土元素球粒陨石标准化配分型式为右倾型,(La/Yb)N值较高,δEu值较低,Ce异常不明显。中-顶志留统塔塔埃尔塔格组砂岩的成熟度高于下志留统柯坪塔格组。地球化学物源分析图解和大地构造背景判别表明: 研究区沉积物源区逐渐由活动型向稳定型转换,下志留统部分沉积物来自于火成岩物源区,具有主动大陆边缘和大陆岛弧性质;中-顶志留统沉积物全部来自于成熟大陆的石英岩沉积物源区。结合广泛分布的奥陶系-志留系平行不整合,认为晚奥陶世研究区为活动大陆边缘,南天山洋盆向南俯冲到塔里木板块之下;早志留世,向南俯冲结束,研究区大地构造背景开始由活动大陆边缘向稳定的被动大陆边缘转换,来自活动型物源区的沉积物逐渐减少,稳定型物源区的碎屑物质逐渐增多;中-末志留世,研究区构造背景完全转变为被动大陆边缘,碎屑物质全部来自于稳定型物源区。上述成果表明,南天山洋的演化过程中确实存在双向俯冲。  相似文献   

9.
The Tianshan range could have been built by both late Early Paleozoic accretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture is marked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphic relics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanic arc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along with unconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation. The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductile shearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductile deformation, and the later deformation, a dextral strike-slip tectonic process, occurred during the Late Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably on pre-Carboniferous metamorphic and ductilely sheared rocks, implying t  相似文献   

10.
浙江早古生代孢粉型化石的研究   总被引:1,自引:0,他引:1  
在浙江西北部早寒武世荷塘组、晚寒武世华严寺组、早奥陶世宁国组、晚奥陶世长坞组和文昌组、早志留世霞乡组、河沥溪组和康山组、中志留世唐家坞组中发现孢粉型化石,孢粉型化石包括疑源类,隐花(陆生)植物孢子类型等,计66属、112种、31未定种。同时讨论了这9个层位孢粉型化石的组合特征、地质时代及其沉积环境。  相似文献   

11.
层序地层的主控因素包括全球海平面变化、构造沉降、气候、物源供给等方面 ,在不同性质的盆地内它们所起的作用大小不一 ,在前陆盆地中以构造沉降控制为主。上扬子区在加里东运动过程中形成前陆盆地 ,主要经历了三次挤压、挠曲沉降至松驰、抬升过程。一是中奥陶世至晚奥陶世临湘期 ,二是晚奥陶世五峰期至早志留世龙马溪期 ,三是早志留世石牛栏期至中志留世。在盆地演化过程中 ,由于前陆隆起露出水面 ,使物源供给方向和性质改变 ,造成隆后盆地沉积环境由开放变为半闭塞 ,由碳酸盐岩转变为碎屑岩沉积。以此重大的转换为界 ,将上扬子区的中奥陶统至中志留统划分为 2个二级层序 ,奥陶系—志留系界线放在第二个二级层序的最大海泛面之顶 ,也就是观音桥组的顶 ,此结果与岩石地层清理成果相一致。以海平面相对变化和沉积物的转变进一步划分成 4个三级层序 ,又根据三级层序的体系域的演化相应地划分出岩性组。因此将临湘组与宝塔组归并成宝塔组 ,体现了海水逐渐变浅、向上加积的过程 ,且它们间为一渐变过渡 ,在碳酸盐浅滩和盆地边缘之处 ,两者划分不开 ,为了便于填图与对比 ,将其划归在一起。由于观音桥组分布不稳定 ,五峰组与龙马溪组下部岩性相似 ,为了油气的评价和填图的可操作性 ,将五峰组、观音桥组、龙马?  相似文献   

12.
In the external units of the Sardinian Variscides Nappe Zone, volcanic and volcanoclastic successions of Middle Ordovician age follow Lower Paleozoic calc-alkaline magmatism developed at the northern Gondwana margin. We present geochemical and zircon U–Pb isotopic data for the Truzzulla Formation, a low-to-medium-grade metamorphic volcanic–volcanoclastic succession belonging to the Monte Grighini Unit, the deepest unit in the Nappe Zone. Geochemical and radiometric data allow us to define a Late Ordovician (Katian) magmatic (volcanic) event of calc-alkaline affinity. These new data, in conjunction with previously published data, indicate that in the Sardinian Variscides, the age of Lower Paleozoic Andean-type calc-alkaline magmatism spans from Middle to Late Ordovician. Moreover, the age distribution of calc-alkaline volcanics and volcanoclastic rocks in the Nappe Zone is consistent with a diachronous development of Middle–Late Ordovician Andean-type magmatic arc through the portion of the northern Gondwanian margin now represented by the Sardinian Variscides. This reconstruction of the Sardinian Variscides reflects the complex magmatic and tectonic evolution of the northern margin of Gondwana in the Lower Paleozoic.  相似文献   

13.
黔中隆起及其周缘地区下古生界油气勘探前景与方向   总被引:4,自引:2,他引:2  
黔中隆起位于上扬子板块东南缘,经历了前震旦纪基底形成、早震旦世裂谷、晚震旦世—志留纪被动大陆边缘、泥盆纪—中三叠世陆内裂谷与克拉通盆地和晚三叠世—第三纪陆内盆地5大演化阶段。该区具有较好的成油气地质条件;发育上震旦统陡山沱组泥页岩和下寒武统牛蹄塘组泥页岩两套区域烃源岩及下奥陶统湄潭组和下志留统龙马溪组局部泥页岩烃源岩,具有很强的生烃潜力;发育上震旦统灯影组白云岩、寒武系金顶山组碎屑岩、高台组—娄山关组碳酸盐岩和下奥陶统—下志留统储层;而牛蹄塘组泥岩和娄山关组膏盐白云岩与上二叠统龙潭组含煤泥岩是该区区域性盖层,湄潭组、龙马溪组为局部盖层;该区保存条件复杂,燕山、喜山构造运动对早期油气藏的改造和破坏较大,是该区油气成藏的主要控制因素,也是该区油气勘探的主要风险所在。研究认为该区油气勘探潜力较大,而安顺凹陷、三塘—百兴凹陷和黔西凹陷整体油气保存条件较好,为最有利天然气勘探区带。  相似文献   

14.
下扬子地区从晚奥陶世开始沉积特征发生了明显转变,从浅海相转变为三角洲相沉积.这一沉积特征转变与早古生代晚期经历的强烈造山事件密切相关.通过下扬子地区晚奥陶世到志留纪沉积序列的沉积学和碎屑锆石年代学研究,揭示沉积盆地的性质及其时空演化过程,探讨沉积盆地发育与造山带隆升剥蚀之间的关系.下扬子地区早古生代晚期沉积学特征从东南向西北岩性由岩屑砂岩变为石英砂岩,粒度由粗粒变为细粒;沉积厚度等值线具有明显的不对称性,靠近东南等值线密,且沉积厚度大;往西北等值线稀疏,且沉积厚度小;沉积中心呈狭长带状分布,并从东南向西北方向迁移;具有前陆盆地的沉积特征.上奥陶统到中志留统的碎屑锆石以900~720Ma的年龄为主,指示物源以下伏新元古代晚期裂谷层序为主;从早志留世高家边组开始,450~420Ma碎屑锆石年龄出现并逐渐增多,表明同造山岩浆岩被剥露地表并开始提供物源;碎屑锆石中没有出现明显的代表华夏地块基底1.9~1.7Ga的特征年龄峰值,表明华夏地块不是下扬子地区早古生代晚期前陆盆地的主要物源区.下扬子地区前陆盆地从晚奥陶世开始沉降,晚奥陶世的构造沉降速率超过了沉积物的供给速率,前渊沉积了巨厚的浅海相泥岩夹粉砂岩和砂岩;晚奥陶世末造山带持续隆升并向西北方向扩展,沉积速率加快,沉积物粒度明显变粗,沉积相也由浅海相转变成三角洲前缘相;早志留世开始埋深较大的同造山岩浆岩开始遭受剥蚀,导致前陆盆地中450~420 Ma的碎屑锆石含量明显增加.  相似文献   

15.
There is a great hiatus between Ordovician and Carboniferous strata in the Northeast China and Korean Peninsula. In order to understand geology and tectonic evolution, and to find out the similarities and differences in both regions, two sections in the Western Hill near Beijing in NE China and several sections in the Korean Peninsula were selected to examine their geologic boundaries between Lower and Upper Paleozoic strata to compare their characteristic features. At four sites in the two sections in the Western Hill near Beijing were examined their contact relations. The Hui Yu section is the same horizon where one site is top of a quarry hill and the other of down hill. Mid-Carboniferous Qingshuijian Formation rests on the Ordovician Majiagou Formation. Limestone beds are more commonly intercalated with shale and sandstone at site 2 of the Hui Yu section, while at site 1, conglomerate beds are dominant. Site 1 of the Se Shu Fen section shows eroded and concealed karst topography and conglomerate beds are intercalated within shale beds. Silurian and Devonian strata are absent in these areas. In the Korean Peninsula, most O-C contacts occur between Ordovician limestone formation and Carboniferous strata, although Silurian strata occur beneath the Carboniferous strata in the Jeongseon area and Pyeongnam Basin. Most contact relations are parallel unconformity and angular unconformity is rarely seen. The O-C relations in both regions are similar to each other, and these indicate that the Korean Peninsula was located near or belonged to the Sino-Korean paraplatform during Paleozoic time.  相似文献   

16.
塔里木盆地上新元古界-下奥陶统是我国超深层油气勘探的重要领域,但其盆地动力学研究程度低、认识分歧大,制约了塔里木盆地超深层油气地质评价。本文综合近年地质学、地球化学与地球物理资料,探讨塔里木盆地晚新元古代-早古生代板块构造环境及其构造-沉积响应,将其划分为以下5个阶段:(1)新元古代-早古生代经历了前展-后撤-前展俯冲的板块构造演化;(2)南华纪发育后撤俯冲机制下的大陆裂谷沉积体系,不同于地幔柱机制;(3)震旦纪-寒武纪不是裂谷盆地的连续沉积,而是发育后撤-前展俯冲转换期的前寒武纪大不整合面;(4)寒武纪-奥陶纪,塔里木盆地缺乏被动大陆边缘背景,发育一套碳酸盐台地沉积,而且随着原特提斯洋闭合的前展俯冲作用增强,导致了中奥陶世晚期台地从东西分异转向南北分异的沉积演变;(5)晚奥陶世末在前展俯冲造山作用下形成复理石快速充填的类前陆盆地,但没有形成碰撞造山作用下的磨拉石前陆盆地。研究认为,塔里木板块晚新元古代-早古生代多期幕式后撤-前展俯冲机制形成了南华纪强伸展→震旦纪末挤压与寒武纪-早奥陶世弱伸展→中奥陶世晚期-志留纪强挤压的两大构造旋回,并造成了构造-沉积演化的差异性,不同于经典的威尔逊旋回模式及其成盆动力学机制。  相似文献   

17.
鄂尔多斯盆地南缘上、下古生界呈现明显的角度不整合,标志着该区卷入了加里东造山带变形。本文以盆地内奥陶纪沉积充填记录为线索,利用地层序列中沉积凝灰岩的锫石U-Pb同位素测年,结合秦岭造山带岩体年代学研究成果,探讨了秦岭加里东期构造事件的发生与发展过程。研究表明:1)奥陶系沉积时期,沉积序列经历了海侵至海退的完整旋回,中奥陶世马五期海退序列开始,晚奥陶世背锅山期海水自鄂尔多斯盆地西南缘完全退出;2)晚奥陶世平凉期至背锅山期,地层序列中凝灰岩、滑塌构造、滑塌角砾岩普遍发育,滑塌构造和滑塌角砾岩的直接触发因素是构造活动引发的地震,构造活动性明显加强;3)中奥陶世马五期海退序列的开始,孕育着秦岭洋壳板块开始向北俯冲,时限大约为475~463 Ma;4)晚奥陶世平凉期,沉积序列中重力流、滑塌构造和凝灰岩普遍发育,孕育着秦岭洋向北的俯冲碰撞进入了高峰阶段,其时限大约为454~450 Ma。  相似文献   

18.
Data obtained using different methods: paleontological, sedimentological, event stratigraphy and C-isotope chemostratigraphy of a unique succession of the Upper Ordovician and lower Silurian, located on the western slope of the Subpolar Urals, are presented in this work. The data obtained made it possible to revise some existing ideas about the texture of the Upper Ordovician succession and clarify the position of the Ordovician-Silurian boundary in the region. In addition, the Upper Ordovician Yaptiknyrd Formation was correlated with the synchronous formations in Scotland and Estonia.  相似文献   

19.
A Paleozoic subduction complex dominates the Mossman Orogen developed at the northern extremity of the Tasmanides, eastern Australia. Its southern part, displayed in the Broken River Province, is characterised by dismembered ocean-plate stratigraphy in which turbidite-dominated packages and widespread tectonic mélange development are characteristic. The Broken River complex is characterised by formations with quartzose sandstone alternating with those largely formed of sandstone of more labile character. The two compositional groups are considered to reflect separate, age-significant sedimentary regimes, but their ages have hitherto been poorly constrained. With the use of 1082 concordant detrital zircon ages from 13 samples we provide age control for the complex and track its sedimentary provenance. Of quartzose units, the Tribute Hills Arenite and Pelican Range Formation are late Cambrian–Early Ordovician, and the Wairuna Formation is Middle to Late Ordovician, in age. The more labile units (Greenvale, Perry Creek and Kangaroo Hills formations) are collectively of late Silurian–mid-Devonian age. Development of the complex spanned some 130 Myr. Continent-derived sediment involved in accretion of much the complex, from mid-Ordovician to mid-Devonian, was largely sourced from a nearby magmatic arc of late Cambrian–Devonian age, now represented by granitoid plutons of the Macrossan and Pama igneous associations. An older far-field Pacific-Gondwana sediment source is characteristic of early-phase (late Cambrian–Early Ordovician) accretion, in common with sedimentary units of this age generally developed in the Tasmanides. We consider the complex to have grown largely by underplating that positioned younger components beneath those that are older, with out-of-sequence thrust interleaving of these components occurring late in the accretionary history. A Late Devonian contractional folding and cleavage development (Tabberabberan orogenesis) is uniformly expressed across the entire complex and reflects an abrupt change in plate engagement with imposition of a compressional stress regime.  相似文献   

20.
滇黔桂地区晚古生代至三叠纪层序地层序列及沉积盆地演化   总被引:19,自引:7,他引:12  
梅冥相  李仲远 《现代地质》2004,18(4):555-563
志留纪末期的加里东运动使扬子板块与华夏板块基本上连接成一个统一的华南板块,在这个较为稳定的构造背景下,从晚古生代至三叠纪滇黔桂地区经历了一个较为复杂的盆地演变过程,形成了一个复杂而有序的层序地层序列。晚古生界可以划分为25个三级沉积层序,三叠系大致可以划分为10个三级沉积层序;35个三级沉积层序又大致可以归并为8个二级构造层序。从三级沉积层序到二级构造层序的归并,代表了滇黔桂地区从晚古生代的“滇黔桂盆地”演化为早、中三叠世的“南盘江盆地”、最后在晚三叠世早期结束海相沉积历史的沉积学和地层学响应过程,为在层序地层学框架内理解复杂的地质演化历史提供了一个较为典型的实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号