首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
冻土墙围护深基坑开挖的有限元数值模拟   总被引:7,自引:0,他引:7  
杨更社  张晶 《岩土力学》2002,23(2):129-132
利用有限元数值模拟方法,分析了冻土围护墙深基坑开挖施工,得出了基坑变形的基本性状以及在相同地质条件下,基坑变形与其主要影响因素之间的关系,为深基坑开挖冻土墙围护设计提供了有价值的参考依据。  相似文献   

2.
波浪、船舶等长期水平循环荷载作用下,桩基将不可避免地产生附加应力和变形。针对饱和黏土地层,开展离心模型试验研究了船舶系泊水平荷载作用下单桩和群桩的变形特性。发现水平循环加-卸载诱发了桩周土体的塑性变形,进而导致桩身产生了不可恢复的水平位移和弯曲变形。随着循环荷载的增加,单桩和群桩的桩顶最大水平位移和残余水平位移均同时增加,但残余水平位移明显小于最大水平位移。单桩的桩顶残余水平位移与最大位移比值介于0.17~0.22;群桩的桩顶残余水平位移与最大水平位移比值介于0.30~0.84。水平循环加-卸载作用下,桩身残余弯曲应变明显小于最大弯曲应变。单桩的残余弯曲应变与最大弯曲应变比值介于0.13~0.50;群桩的桩身残余弯曲应变与最大弯曲应变比值介于0.23~0.82。群桩前桩的残余和最大弯曲应变明显大于后桩,前桩与后桩的最大弯曲应变、残余应变比值分别高达3.2和3.1。因此,前桩要采取合理的加固和保护措施,以确保桩基长期服役的安全性。  相似文献   

3.
朱训国  陈枫  徐孟林  赵德深 《岩土力学》2013,34(Z1):148-154
以大连市地铁2号线202标段工程为研究对象,通过相似材料模型试验绘制不同地层随时间沉降曲线,即同一时刻不同地层沉降槽曲线和不同地层水平位移曲线,得到盾构隧道施工地层移动规律。试验结果表明,不同地层各测点的垂直位移随时间的变化可用以时间为自变量的负指数函数表示;先行隧道施工对地层产生扰动,引起地层软化,导致两条隧道之间地表沉降明显叠加,沉降较大;隧道开挖时,若存在地下结构或管线,其将受到附加剪切作用,易出现裂缝,在施工中必须做好切实可行的防护措施。  相似文献   

4.
徐鹏  蒋关鲁  黄昊威  黄哲  王智猛 《岩土力学》2019,40(4):1427-1432
加筋土挡墙因其特有的景观性能、协调变形性能而日益受到设计者青睐。面板作为加筋土挡墙的组成部分,对墙体的承载能力影响显著。针对现有设计规范无法考虑面板形式对结构自身力学变形特性的影响,设计并开展了整体式与分块式面板的离心模型试验。数据测试分析显示:整体式面板加载期的位移小于分块式面板位移;由于分块式面板位移较大,所以其水平土压力小于整体式面板土压力;加筋土挡墙面板底部存在应力集中现象;分块式面板筋-土界面的摩擦系数发挥值大于整体式面板数值,但两者均小于设计规范建议值;由于模型筋材长度较长并且连接件的存在,导致原型设计较为保守。  相似文献   

5.
斜坡上的基桩具有承重和阻滑的双重功能,其受力变形性状远比平地上的情形复杂。采用模型试验和数值模拟相结合的方法研究了其水平承载特性及影响因素。模型试验结果表明:临坡距对基桩的水平承载变形性能有较大影响。同一级荷载下,临坡距较大的桩身水平位移小于临坡距较小的基桩;临坡距较大基桩的临界荷载和极限承载力也大于临坡距小的基桩。数值模拟研究结果表明:基桩水平极限承载力随着斜坡坡比的增大而减小,随着临坡距的增大而增大,与模型试验的结果基本一致。对比分析了斜坡和平地基桩水平承载变形性能的差别,得出了可考虑坡比和临坡距的斜坡基桩水平极限承载力简便计算方法,可为有关规范的修订以及工程设计提供参考。  相似文献   

6.
季节冻土地区人工冻土墙的冻结特性研究   总被引:1,自引:1,他引:1  
吉植强  徐学燕 《岩土力学》2009,30(4):971-975
季节冻土层中的地温呈非线性分布,改变了冻土墙形成时的初始温度条件以及形成后的结构形式。有季节冻土条件下形成深6 m、厚1.4 m的冻土墙较无季节冻土的情况可减少冻结时间15 d,减少冷能消耗60 %,经济上有极大优势。通过数值模拟,得到了能量消耗与时间关系曲线、冻结管热流密度与深度关系曲线、冻土墙的厚度与时间关系曲线、冻土墙的厚度与深度关系曲线等,可见季节冻土层的存在显著提高了冻土墙的厚度发展速度,减少了冻结时间,降低了冷能消耗。模拟了49种工况,对冻结管直径、冻结管间距、冻结时间、冻土墙平均温度、冻土墙厚度等数据进行了非线性回归分析,得到冻土墙厚度与时间成对数函数关系、平均温度与时间成反比例关系的相关表达式,为人工冻结技术的合理运用和推广提供了理论依据。  相似文献   

7.
王正兴  缪林昌  王冉冉  潘浩 《岩土力学》2013,34(Z2):143-149
隧道施工会对邻近管线造成危害,但目前对土体位移与管线位移两者之间的关系还没有清晰的认识。针对这一问题,设计砂土中考虑不同管线管径、埋深及抗弯刚度的3组隧道施工模型试验,分析垂直下穿隧道施工过程中砂土和管线位移规律。研究结果表明,Vorster修正高斯公式能较好地拟合砂土沉降分布,其控制参数?值在0.2~1.0之间变化,且与地层埋深成正比;土体沉降槽宽度系数i对管线变形有较大影响,埋深相同的条件下管线抗弯刚度与沉降值成反比;深埋管线的变形主要受上拱效应支配,且管径越大上拱效应越明显,而下拉效应主要支配着浅埋管线的位移;Smax /i为影响管土相对位移一个关键参数,在此基础上提出了修正的管土相对刚度计算公式。  相似文献   

8.
季节冻土层对房屋地震破坏的影响   总被引:5,自引:2,他引:5  
冬期地面形成一坚硬的季节冻结层,从而在一定程度上改变了地基土的动力特性,也就改变了地表层的卓越周期.1986年黑龙江省德都地区冬、夏两次地震震害调查发现,冬期地震对较刚性房屋破坏严重,而夏期刚好相反,即相对柔性结构房屋地震破坏严重.通过实地观测与室内分析计算,进一步研究了这一问题.  相似文献   

9.
《岩土力学》2017,(7):1887-1893
扩底楔形桩具有单位材料利用率高、竖向桩侧摩阻力和桩端阻力较常规等截面桩高的技术优点。然而,针对该桩型竖向及水平向承载力的定量模型试验研究相对较少。基于模型试验方法,开展砂性土中竖向、水平向荷载以及地面堆载等不同形工况荷载作用下扩底楔形桩的承载特性试验,测得不同荷载等级下桩侧摩阻力、桩端阻力、侧向土压力、桩顶下拽位移以及桩身下拽力等分布规律;同时,开展等混凝土用量常规等直径桩的承载特性试验作为对比分析,初步探讨了两种桩型的受力机制与异同点。研究结果表明,试验条件下,扩底楔形桩的单桩竖向承载力约为等直径圆桩的2.33倍,表现出侧阻力和端阻力都优于圆形桩的特点;水平承载力约为等直径圆桩的1.48倍,上部直径较大和扩大头的存在提高了其水平承载性能;与等直径圆桩相比,楔形角的存在可有效降低桩顶下拽位移,可见把传统桩型转变成扩底楔形桩是降低负摩阻力对桩基影响的有效方法之一。  相似文献   

10.
采用电机伺服水平循环加载设备开展了一系列1g模型试验,研究砂土中大直径单桩在水平循环荷载作用下的刚度和变形累积特性。试验结果表明,一次加卸载产生的残余位移约为峰值位移的80%;随着循环次数的增加,循环加载滞回曲线面积逐渐减小,表明桩周土体行为从弹塑性向弹性阶段转变;滞回曲线割线刚度随着循环次数的增加,呈现先增后减的变化,为浅层桩周土体逐渐密实以及桩周土体抵抗由浅层向深层发展的趋势引起;桩顶累积位移随桩径增加而近似等幅减小,随埋深增加,位移的减小幅度也逐渐减小,表明了临界埋深的存在。在指数模型的基础上,在双对数坐标系中通过线性拟合给出了循环累积位移经验模型,发现增大桩径对于减小循环累积位移的效果要好于埋深。  相似文献   

11.
季节冻土区水盐迁移及土体变形特性模型试验研究   总被引:1,自引:0,他引:1  
为研究盐渍化冻土水分、盐分迁移规律以及变形特性,探索寒区旱区土壤盐渍化机制,配制了不同含盐量的粉质黏土进行模型试验。试验结果表明,温度、水分、盐分和土体变形之间相互耦合。温度降低有利于盐晶体析出和未冻水结冰;反之,温度升高易于晶体溶解和冰融化。水盐相变过程中伴随能量的释放或吸收,影响土体温度。盐分改变了流体的动力黏度和土体冻结温度,并且盐分结晶使土体产生较大的吸力,加剧了未冻水含量的变化。水分是盐分迁移的介质,盐分以离子形式随未冻水迁移。降温期水分盐分向上迁移,升温期迁移方向相反。迁移速率与吸力有关,冻结缘附近吸力最大,速率最快。盐渍化冻土的变形是盐分和水分共同作用的结果,含盐量较低时冻胀和融沉是土体变形的主要因素;当含盐量较高时盐胀和溶陷占主导作用。  相似文献   

12.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:4,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   

13.
基于SNTHERM雪热力模型的东北地区季节冻土温度模拟   总被引:1,自引:0,他引:1  
梁爽  杨国东  李晓峰  赵凯  姜涛 《冰川冻土》2018,40(2):335-345
冬季土壤温度在土壤肥力、植被安全越冬、土壤微生物活动中扮演着重要角色。雪盖的反照与隔热作用对冬季土壤温度变化及冻融过程具有一定影响,深入探究积雪覆盖对土壤温度的影响机制有十分重要的意义。雪热力模型(Snow Thermal Model,SNTHERM)是用来模拟和预测积雪演化和冻土温度的一维质能平衡模型。基于该模型,结合积雪下冻土温度的观测试验,通过模型模拟结果与实测数据的统计特征参数分析,进行了积雪覆盖下冻融土壤温度变化过程模拟的有效性和精度评价。结果表明,在积雪覆盖条件下,SNTHERM模型能够有效地模拟雪盖下浅层(5 cm、10 cm、15 cm深度)冻土日平均温度的变化过程,模拟值与观测值具有很好的一致性。通过改进模型中土壤层水分迁移等因素,能够提高冻土温度的模拟精度,为研究积雪各参数演化过程与下垫面温度的相互作用奠定理论基础,有助于提高积雪参量空间遥感的反演精度。  相似文献   

14.
基于季节冻土区冻融循环条件,利用高低温交变试验箱与静态应变仪,进行了不同配比水泥改良路基土的温缩试验研究.结果表明:水泥改良土的温缩应变呈"螺旋式"变化,温缩应变随水泥掺量增加逐渐增加,初始温度循环对水泥改良土影响较大,经历三次温度循环后水泥土温缩应变特性已相当明显且变化规律趋于稳定,土体内部物化反应也达到平稳,但多次...  相似文献   

15.
1990-2014年西藏季节冻土最大冻结深度的时空变化   总被引:2,自引:1,他引:2  
最大冻结深度是季节冻土变化的主要指标,也是季节冻土地区工程设计、建设、运营的重要参数。通过斯蒂芬(Stefan)方法计算了1990-2014年西藏地区季节冻土的最大冻结深度,分析了其时空变化特征,结果表明:近25 a西藏地区季节冻土最大冻结深度在空间分布具有垂直分带性、纬度地带性和区域性等规律,基本上呈自西北向东南方向递减的空间分布特征;时间上,在全球气候变暖的背景下,最大冻结深度基本呈逐年减薄的特征。西藏地区季节冻土最大冻结深度与年平均气温和年降水量呈现负相关,随着年平均气温和年降水量的上升,最大冻结深度呈减小的趋势,且最大冻结深度对年平均气温的响应比对年降水量的响应显著。  相似文献   

16.
张向东  傅强 《岩土力学》2011,32(8):2261-2266
主要是对冻土的三轴蠕变特性进行分析研究,从而进一步确定具有明显流变特性的平面冻土墙的厚度。通过对冻土的流变特性进行理论分析,建立了冻黏土在复杂应力状态下的对数型蠕变方程。采用“低温箱-三轴压力室”轻型试验设备系统对人工配制的冻黏土试件进行了三轴蠕变试验,获得了冻黏土在复杂应力状态下的蠕变曲线。根据试验结果,对冻黏土的对数型非线性蠕变方程进行回归分析,得到了冻黏土对数型蠕变方程参数的数值。根据冻土流变理论和所建立的蠕变方程,以及平面冻土墙的厚度计算公式,利用Visualc++ 6.0和Matlab 6.0技术开发了冻土墙厚度计算的计算机应用软件。分析研究了平面冻土墙厚度与跨度、基坑暴露时间、基坑开挖深度的关系。平面冻土墙厚度随时间的延长在短期内具有急速增长的趋势,而后随时间的延长逐渐趋于稳定;平面冻土墙厚度受其跨度的影响较小,但随基坑开挖深度的加深具有逐步增长的趋势;温度对平面冻土墙厚度的影响显著,温度越高,厚度越大,所以,控制温度是平面冻土墙设计中的关键。从而为蠕变变形较大的平面冻土墙的厚度确定提供了依据。  相似文献   

17.
季节冻土区高速铁路路基保温措施效果研究   总被引:3,自引:1,他引:3  
吕菲 《冰川冻土》2016,38(1):115-120
为减小季节性冻土区路基冻胀对高速铁路无砟轨道平顺度的影响,采用路基保温措施进行室内模型试验,对不同厚度保温板覆盖下路基AB组填料在多个冻融循环过程中的温度及变形规律进行了试验与分析.室内模型试验结果显示,XPS保温板具有良好的保温隔热作用,厚度越大,保温效果越好,保温措施有效控制了哈齐线路基AB组填料的冻胀变形,同时也降低了其残余变形.根据室内试验结果,采用20cm厚保温板的保温措施在哈齐线路基试验段进行现场试验.试验结果表明,该保温措施有效控制了左右线轨道板下方区域的冻胀变形,保证了轨面平顺度.  相似文献   

18.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:3,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

19.
1980-2017年青海省玉树地区季节冻土变化对气候变暖的响应   总被引:1,自引:1,他引:1  
利用玉树地区5个气象台站1980-2017年逐月温度和最大冻土深度资料,采用线性趋势、相关及主成分分析等统计方法,对玉树地区最大季节冻土深度在气候变暖背景下的变化规律进行了详细探讨,在分析冻土深度与气温及地表温度变化关系的基础上给出最大冻土深度对温度变化的响应模型。结果表明:1980-2017年玉树地区最大冻土深度以10 cm·(10a)-1速率呈显著下降趋势,年代际间变化则表现出“减-增-减-增”波动特征,年内对温度变化的响应在时间上存在一定滞后性;最大冻土深度空间分布呈“西北高、东南低”且具有明显的垂直地带性分布;温度变化对局地季节性冻土的影响有一定差异性,除平均最高地温外其余各温度因子与最大冻土深度变化具有良好的一致性,对冻土影响最大的是平均地温,其次为平均最低气温和平均气温,季节性冻土对气温变暖的响应呈现为退化状态。最大冻土深度变化的温度影响因子主成分回归表明,近年来气温和地温的显著升高是玉树地区冻土退化的最大驱动力,响应模型对估算玉树地区未来最大冻土深度的变化具有较高的可信度。  相似文献   

20.
Based on the meteorological data from 46 meteorological stations in Jilin Province from 1961 to 2015, the spatiotemporal changes of annual freezing/thawing index and its relationship with longitude, latitude, altitude were studied by the method of climatic diagnosis analysis in Jilin Province. The results showed that the freezing index had decreased gradually from north to south, and the thawing index had decreased from west to east in the province. The freezing index showed a significant downward trend, with the climatic tendency rates of AFI(air freezing index)of -48. 7 ℃·d·(10a)-1and SFI(surface freezing index)of -166. 8 ℃·d·(10a)-1. The ATI(air thawing index)and STI(surface thawing index)increased significantly at 57 ℃·d·(10a)-1 and 93. 7 ℃·d·(10a)-1, respectively. The SFI, ATI, and STI had mutated in 2001, 1994, and 1997, respectively. In the 1960s and 1970s, the freezing index was very high and the thawing index was extremely low. The trend of freezing thawing index in the future was consistent with the past, when the freezing index had an downward trend and the thawing index had an upward trend. The freezing index was mainly affected by latitude and increased with the rise of latitude. The thawing index was mainly affected by altitude and decreased significantly with the rise of altitude. The climatic tendency of freezing index increased with the rise of altitude, and the climate tendency of the thawing index increased with the rise of latitude. © Journal of Glaciology and Geocryology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号