首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . A metallicity of   Z = 0.02  is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass–radius relations for helium and oxygen cores.  相似文献   

2.
We present a detailed calculation of the evolution of low-mass (<0.25 M) helium white dwarfs. These white dwarfs (the optical companions to binary millisecond pulsars) are formed via long-term, low-mass binary evolution. After detachment from the Roche lobe, the hot helium cores have a rather thick hydrogen layer with mass between 0.01 and 0.06 M. As a result of mixing between the core and outer envelope, the surface hydrogen content ( X surf) is 0.5–0.35 , depending on the initial value of the heavy element Z and the initial secondary mass. We found that the majority of our computed models experience one or two hydrogen shell flashes. We found that the mass of the helium dwarf in which the hydrogen shell flash occurs depends on the chemical composition. The minimum helium white dwarf mass in which a hydrogen flash takes place is 0.213 M ( Z =0.003), 0.198 M ( Z =0.01), 0.192 M ( Z =0.02) or 0.183 M ( Z =0.03). The duration of the flashes (independent of chemical composition) is between a few ×106 and a few ×107 yr. In several flashes the white dwarf radius will increase so much that it forces the model to fill its Roche lobe again. Our calculations show that the cooling history of the helium white dwarf depends dramatically on the thickness of the hydrogen layer. We show that the transition from a cooling white dwarf with a temporarily stable hydrogen-burning shell to a cooling white dwarf in which almost all residual hydrogen is lost in a few thermal flashes (via Roche lobe overflow) occurs between 0.183 and 0.213 M (depending on the heavy element value).  相似文献   

3.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

4.
We report the spectroscopic confirmation of four further white dwarf members of Praesepe. This brings the total number of confirmed white dwarf members to 11, making this the second largest collection of these objects in an open cluster identified to date. This number is consistent with the high-mass end of the initial mass function of Praesepe being Salpeter in form. Furthermore, it suggests that the bulk of Praesepe white dwarfs did not gain a substantial recoil kick velocity from possible asymmetries in their loss of mass during the asymptotic giant branch phase of evolution. By comparing our estimates of the effective temperatures and the surface gravities of WD0833+194, WD0840+190, WD0840+205 and WD0843+184 to modern theoretical evolutionary tracks, we have derived their masses to be in the range  0.72–0.76 M  and their cooling ages ∼300 Myr. For an assumed cluster age of 625 ± 50 Myr, the inferred progenitor masses are between 3.3 and  3.5 M  . Examining these new data in the context of the initial mass–final mass relation, we find that it can be adequately represented by a linear function  ( a 0= 0.289 ± 0.051,  a 1= 0.133 ± 0.015)  over the initial mass range 2.7–6  M  . Assuming an extrapolation of this relation to larger initial masses is valid and adopting a maximum white dwarf mass of  1.3 M  , our results support a minimum mass for core-collapse supernovae progenitors in the range  ∼6.8–8.6 M  .  相似文献   

5.
The aim of this work is to investigate the effect of element diffusion on the evolution of helium white dwarfs. To this end, we couple the multicomponent flow equations that describe gravitational settling, chemical and thermal diffusion to an evolutionary code. We compute the evolution of a set of helium white dwarf models with masses ranging from 0.169 to 0.406 M. In particular, several low-mass white dwarfs have been found in binary systems as companion to millisecond pulsars. In these systems, pulsar emission is activated by mass transfer episodes so that, if we place the zero-age point at the end of such mass transfer, then the pulsar and the white dwarf ages should be equal. Interestingly enough, available models of helium white dwarfs neglect element diffusion. Using such models, good agreement has been found between the ages of the components of the PSR J1012+5307 system. However, recent observations of the PSR B1855+09 system cast doubts on the correctness of such models, which predict a white dwarf age twice as long as the spin-down age of the pulsar. In this work, we find that element diffusion induces thermonuclear hydrogen shell flashes for models in the mass interval 0.18≲ M /M ≲ 0.41 . We show, in particular, that the occurrence of these diffusion-induced flashes eventually leads to white dwarf models with hydrogen envelope masses too small to support any further nuclear burning, thus implying much shorter cooling ages than in the case when diffusion is neglected. In particular, excellent agreement is found between the ages of PSR B1855+09 system components, solving the age discrepancy from first principles.  相似文献   

6.
WD 1704+481 is a visual binary in which both components are white dwarfs. We present spectra of the H α line of both stars which show that one component (WD 1704+481.2=Sanduleak B=GR 577) is a close binary with two white dwarf components. Thus, WD 1704+481 is the first known triple degenerate star. From radial velocity measurements of the close binary we find an orbital period of 0.1448 d, a mass ratio, q M bright M faint, of 0.70±0.03 and a difference in the gravitational redshifts of 11.5±2.3 km s−1. The masses of the close pair of white dwarfs predicted by the mass ratio and gravitational redshift difference combined with theoretical cooling curves are 0.39±0.05 and 0.56±0.07 M. WD 1704+481 is therefore also likely to be the first example of a double degenerate in which the less massive white dwarf is composed of helium and the other white dwarf is composed of carbon and oxygen.  相似文献   

7.
We have examined the evolution of merged low-mass double white dwarfs that become luminous helium stars. We have approximated the merging process by the rapid accretion of matter, consisting mostly of helium, on to a carbon–oxygen (CO) white dwarf. After a certain mass is accumulated, a helium shell flash occurs, the radius and luminosity increase and the star becomes a yellow giant. Mass accretion is stopped artificially when the total mass reaches a pre-determined value. When the mass above the helium-burning shell becomes small enough, the star evolves blueward almost horizontally in the Hertzsprung–Russell diagram. The theoretical models for the merger of a 0.6-M CO white dwarf with a 0.3-M He white dwarf agree very well with the observed locations of extreme helium stars in the  log  T eff–log  g   diagram, with their observed rates of blueward evolution, and with luminosities and masses obtained from their pulsations. Together with predicted merger rates for  CO+He  white dwarf pairs, the evolutionary time-scales are roughly consistent with the observed numbers of extreme helium stars. Predicted surface carbon and oxygen abundances can be consistent with the observed values if carbon and oxygen produced in the helium shell during a previous asymptotic giant branch phase are assumed to exist in the helium zone of the initial CO white dwarfs. These results establish the  CO+He  white dwarf merger as the best, if not only, viable model for the creation of extreme helium stars and, by association, the majority of R Coronae Borealis stars.  相似文献   

8.
We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of  2.639 0157 ± 0.000 0016  d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses  (M1= 0.66 ± 0.03 M; M2= 0.62 ± 0.03 M)  and radii  (R1= 0.64 ± 0.08 R; R2= 0.61 ± 0.09 R)  of the components, which are consistent with empirical mass–radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of Hα emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys.  相似文献   

9.
Magnetic white dwarfs with fields in excess of ∼106 G (the high field magnetic white dwarfs; HFMWDs) constitute about ∼10 per cent of all white dwarfs and show a mass distribution with a mean mass of  ∼0.93 M  compared to  ∼0.56 M  for all white dwarfs. We investigate two possible explanations for these observations. First, that the initial–final mass relationship (IFMR) is influenced by the presence of a magnetic field and that the observed HFMWDs originate from stars on the main sequence that are recognized as magnetic (the chemically peculiar A and B stars). Secondly, that the IFMR is essentially unaffected by the presence of a magnetic field, and that the observed HFMWDs have progenitors that are not restricted to these groups of stars. Our calculations argue against the former hypothesis and support the latter. The HFMWDs have a higher than average mass because on the average they have more massive progenitors and not because the IFMR is significantly affected by the magnetic field. A requirement of our model is that ∼40 per cent of main-sequence stars more massive than  ∼4.5 M  must either have magnetic fields in the range of ∼10–100 G, which is below the current level of detection, or generate fields during subsequent stellar evolution towards the white dwarf phase. In the former case, the magnetic fields of the HFMWDs could be fossil remnants from the main-sequence phase consistent with the approximate magnetic flux conservation.  相似文献   

10.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

11.
We report the discovery of the nearby  ( d = 24 pc)  HD 75767 as an eight billion year old quadruple system consisting of a distant M dwarf pair, HD 75767 C–D, in orbit around the known short-period   P = 10.25 d  single-lined binary HD 75767 A–B, the primary of which is a solar-like G star. On the reasonable assumption of synchronous orbital rotation as well as rotational and orbital coplanarity for the inner pair, we get   M B= 0.96 M  for the unseen HD 75767 B, that is, the case of a massive white dwarf. Upon future evolution, mass transfer towards HD 75767 B will render the   M A= 0.96 M  G-type primary, now a turnoff star, to become a helium white dwarf of   M A∼ 0.33 M  . Depending on the mass accretion rate, accretion efficiency and composition of the massive white dwarf, this in turn may result in a collapse of HD 75767 B with the formation of a millisecond pulsar, i.e. the creation of a low-mass binary pulsar (LMBP), or, instead, a Type Ia supernova explosion and the complete disruption of HD 75767 B. Irrespective of which scenario applies, we point to the importance of the distant M dwarfs as the likely agents for the formation of the inner, short-period HD 75767 A–B pair, and hence a path that particularly avoids preceding phases of common envelope evolution.  相似文献   

12.
Using Eggleton's stellar evolution code, we carry out 150 runs of Population I binary evolution calculations with the initial primary mass between 1 and 8 M, the initial mass ratio     between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass M 1i of the primary, the initial mass ratio q i and the radius of the primary at the onset of RLOF. We also find that a carbon–oxygen white dwarf with mass as low as 0.33 M may be formed if the initial mass of the primary is around 2.5 M.  相似文献   

13.
We present the discovery of the widest known ultracool dwarf–white dwarf binary. This binary is the first spectroscopically confirmed widely separated system from our target sample. We have used the Two-Micron All-Sky Survey (2MASS) and SuperCOSMOS archives in the southern hemisphere, searching for very widely separated ultracool dwarf–white dwarf binaries, and find one common proper motion system, with a separation of 3650–5250 au at an estimated distance of 41–59 pc, making it the widest known system of this type. Spectroscopy reveals 2MASS J0030−3740 is a DA white dwarf with   T eff= 7600 ± 100 K, log( g ) = 7.79–8.09  and   M WD= 0.48–0.65 M  . We spectroscopically type the ultracool dwarf companion (2MASS J0030−3739) as M9 ± 1 and estimate a mass of  0.07–0.08 M,  T eff= 2000–2400 K  and  log( g ) = 5.30–5.35  , placing it near the mass limit for brown dwarfs. We estimate the age of the system to be >1.94 Gyr (from the white dwarf cooling age and the likely length of the main-sequence lifetime of the progenitor) and suggest that this system and other such wide binaries can be used as benchmark ultracool dwarfs.  相似文献   

14.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

15.
We present  0.9–2.5 μm  spectroscopy with   R ∼800  and  1.12–1.22 μm  spectroscopy with   R ∼5800  for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL ' photometry for both components of the LHS 102 system, and L ' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disc M/L dwarf binary system LHS 102 and the kinematically young disc M/T dwarf binary system Gliese 229. The data are analysed using synthetic spectra generated by the latest 'AMES-dusty' and 'AMES-cond' models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely because of the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disc, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young  (age∼30 Myr)  with masses (A,B) of (0.38,≳0.007) M, and the LHS 102 system is older, aged  1–10 Gyr  with masses (A,B) of (0.19,0.07) M.  相似文献   

16.
We present a detailed calculation of model atmospheres for DA white dwarfs. Our atmosphere code solves the atmosphere structure in local thermodynamic equilibrium with a standard partial linearization technique, which takes into account the energy transfer by radiation and convection. This code incorporates recent improved and extended data base of collision-induced absorption by molecular hydrogen. We analyse the thermodynamic structure and emergent flux of atmospheres in the range 2500 T eff60 000 K and 6.5log  g 9.0. Bolometric correction and colour indices are provided for a subsample of the model grid. Comparison of the colours is made with published observational material and results of other recent model calculations.
Motivated by the increasing interest in helium-core white dwarfs, we analyse the photometric characteristics of these stars during their cooling, using evolutionary models recently available. Effective temperatures, surface gravities, masses and ages have been determined for some helium-core white dwarf candidates, and their possible binary nature is briefly discussed.  相似文献   

17.
We present the results of a proper motion survey of the Hyades to search for brown dwarfs, based on UKIRT Deep Sky Survey (UKIDSS) and Two-Micron All Sky Survey (2MASS) data. This survey covers  ∼275 deg2  to a depth of   K ∼ 15  mag, equivalent to a mass of  ∼0.05 M  assuming a cluster age of 625 Myr. The discovery of 12 L dwarf Hyades members is reported. These members are also brown dwarfs, with masses between  0.05 < M < 0.075 M  . A high proportion of these L dwarfs appear to be photometric binaries.  相似文献   

18.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

19.
The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low-mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower  (<500 K)  than the coolest brown dwarfs currently observed. These ultra-low-mass substellar objects would have spectral types >T8.5, and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 and 8   M  , i.e. early B to mid-F). This paper presents the results of a multi epoch J band common proper motion survey of 23 nearby equatorial and Northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that  ≲5 per cent  of white dwarfs have substellar companions with   T eff≳ 500 K  between projected physical separations of 60–200 au.  相似文献   

20.
The I − Z colour has recently been shown to be a good temperature indicator for M dwarfs. We present the first IZ photometry of a small sample of L dwarfs ranging in spectral type from L0.5V to L6.0V. We find that the I − Z colour is not a good temperature indicator for objects between L1V and L5V, such objects having colours that overlap with mid M dwarfs. We attribute this to the reduction in the strength of the TiO and VO bands in the L dwarfs, which are the dominant opacity source in the I band for late M dwarfs. Beyond L5V, I − Z appears to be a reasonable indicator. This has important implications for the planning of optical surveys for cool objects in clusters and the field. For example, I − Z will cease to be a good method of identifying brown dwarfs in the Pleiades below around 0.04 M, and at around 0.075 M in the Hyades and Praesepe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号