首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
与南沙深水区温跃层有关的海水平均温度的分布特征   总被引:5,自引:0,他引:5  
邱章  蔡树群 《热带海洋》2000,19(4):10-14
在确定温跃层三要素(深度(上界深度)、厚度和强度)及测站温度垂直最大梯度的基础上,分别计算了南沙深水测站(水深大于1000m)在温跃层上界深度范围内的平均温度、温跃层下界渡以下自300m层至800m层之间的平均温度。分析表明,在温跃层上界深度范围内,海水平均温度的水平分布明显显示出低温海水自南沙的西北部向东南部缓慢推进之势,似是东北季风驱动的结果。温度垂直梯度越大,它在垂直方向上阻碍上层海水的热量  相似文献   

2.
为了解印度洋大眼金枪鱼(Thunnus obesus)和黄鳍金枪鱼(Thunnus albacares)主要作业渔场温跃层上界温度、深度和垂直温差时空变化特征,采用2007~2010年Argo温度剖面浮标资料,计算了印度洋大眼金枪鱼、黄鳍金枪鱼主要作业渔场次表层温度和温跃层特征参数.研究认为,温跃层上界深度、温度和10~200 m温差存在明显的季节性变化.5~9月在15°~25°S纬向区域存在一块季节性较深的温跃层上界深度区域;在20°S以南海域,12月至次年4月份温跃层上界深度非常浅;在15°S至赤道纬向区域,尤其是在西部,常年存在一块温跃层较浅的区域.总体而言,温跃层上界深度较深的地方温度相对较低,在2~5月期间,在阿拉伯海东南和孟加拉湾西南形成一块大面积的暖水区;7~9月期间,在15°~25°S,纬向区域因温跃层上界深度较深,从表层至温跃层上界深度温度变化相对较大,温跃层上界温度显著较低.在20°S以南,温跃层上界温度常年都很低.10°S经线方向将水下10 ~200 m垂直温度分成南北两部分,10°S以南部及以北部海区的垂直温差分别大于和小于10℃.分析结果初步揭示了金枪鱼主要作业渔场温跃层上界温度、深度和垂直温差分布特征,为金枪鱼实际生产作业提供理论参考.  相似文献   

3.
提出了一种以海表面温度为输入参数的海水温度分层模型。以2005—2012年的Argo气候态数据集与Argo浮标数据为基础,采用相对梯度法对海水温度垂向结构进行了分层,并据此获取了各层拟合方程所需的参数,包括:混合层深度、混合层梯度、温跃层上界深度、温跃层下界深度、深层大洋起始深度以及方程拟合系数。本文通过世界大洋数据库09版的CTD、XBT实测剖面数据对模型进行了检验。检验结果表明,该模型可以有效地对海水温度结构进行模拟,特别是400m以上的中上层大洋。模拟结果的总体均方根差(RMSE)为0.778℃,而在水深400m以上的中上层区域误差为0.494℃。  相似文献   

4.
南海温跃层深度计算方法的比较   总被引:1,自引:0,他引:1  
姜波  吴新荣  丁杰  张榕 《海洋通报》2016,35(1):64-73
基于1986-2008年的中国近海及邻近海域再分析产品(CORA)气候平均海温资料,分别运用S-T法、垂向梯度法和最大曲率点3种温跃层定义计算了南海温跃层上界深度,揭示了南海温跃层季节变化特征。对3种不同定义确定的温跃层上界深度进行比较发现:采用不同定义计算南海温跃层上界深度存在差异,S-T法确定的温跃层上界深度最浅,垂向梯度法其次,最大曲率点法最深;在深水区(水深200 m)运用S-T法计算的温跃层上界深度与垂向梯度法的结果比较一致,都与实际温跃层深度符合较好;在浅水区(水深200 m),垂向梯度法和最大曲率点法可以准确判定无跃区,但对于温跃层深度计算,3种定义误差均较大。  相似文献   

5.
利用Argo浮标剖面原始观测资料,分别采用垂直梯度法、S-T方法和拟阶梯函数法研究热带西太平洋127°~128°E,10°~16°N海域内温跃层特征量,得出以下结论:该片海域垂直梯度法采用0.03℃/m这一限值标准更加合适;通常情况下S-T方法计算得出的上界深度较垂直梯度法浅,且只能计算温跃层上界深度,为简化计算,在太阳辐射较弱季节可以采用S-T方法替代垂直梯度法;拟阶梯函数法可直观确定上层温跃层范围及下层温跃层的上界,但计算温跃层下界深度时产生的误差较大;研究热带西太平洋海域温跃层时,采用垂直梯度法最为合适。  相似文献   

6.
中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系   总被引:3,自引:2,他引:1  
为了解热带中西太平洋延绳钓黄鳍金枪鱼(Thunnus albacares)适宜的温跃层参数分布区间,采用Argo浮标温度信息和中西太平洋渔业委员会(The Western and Central Pacific Fisheries Commission,WCPFC)的黄鳍金枪鱼延绳钓渔获数据,绘制了热带中西太平洋月平均温跃层特征参数和月平均CPUE的空间叠加图,用于分析热带中西太平洋黄鳍金枪鱼中心渔场时空分布和温跃层特征参数间的关系。分析结果表明:热带中西太平洋温跃层上界深度、温度具有明显的季节性变化,而温跃层下界深度、温度季节性变化不明显,黄鳍金枪鱼中心渔场分布和温跃层季节性变化有关。全年中心渔场的位置分布在温跃层上界深度高值区域,随温跃层上界深度高值区域季节性南北移动。在新几内亚以东纬向区域(5°N~10°S,150°E~170°W)上界深度值全年都在70~100m之间,全年都是延绳钓黄鳍金枪鱼中心渔场。中心渔场上界温度多在26℃以上,但是在上界温度超过30℃区域,CPUE值较小。中心渔场主要分布在温跃层下界深度两条高值带之间区域,在温跃层下界深度超过300m和小于150m区域,CPUE值均偏低。中心渔场主要分布在下界温度低于13℃区域,下界温度超过17℃难以形成中心渔场。频次分析和经验累积分布函数计算其适宜温跃层特征参数分布,得出中西太平洋黄鳍金枪鱼适宜的温跃层上界温度和深度分别是27~29.9℃和70~109m;适宜的温跃层下界温度和深度分别是11~13.9℃和250~299m。文章初步得出中西太平洋黄鳍金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为我国金枪鱼实际生产作业提供技术支持。  相似文献   

7.
东海夏季跃层深度计算方法的比较   总被引:5,自引:0,他引:5  
基于31°N和PN断面高分辨率的温度、盐度和密度(CTD)资料,分别选取1992,1998和2001年东海夏季长江径流量偏小、偏大和正常的3个年份,运用4种跃层计算方法计算了2个断面的温跃层和密度跃层上界的深度。计算结果与实际跃层上界深度比较发现,在3种不同条件下,采用垂向梯度法计算的东海夏季跃层上界深度,无论在浅海海区还是深海海区均较为理想。长江径流量偏小和正常的年份,在东海的浅海海区(水深<200m)运用S-T法计算的跃层上界深度与垂向梯度法的结果比较一致,都与实际跃层深度符合较好。在具有高分辨率资料的情况下,垂向梯度法是4种方法中计算东海夏季跃层上界深度的最佳方法。在缺乏高分辨率资料且长江径流量不大时,夏季东海浅海海区也可以运用S-T法计算温跃层和密度跃层上界深度。  相似文献   

8.
为了解太平洋大眼金枪鱼(Thunnus obesus)和黄鳍金枪鱼(Thunnus albacares)主要作业渔场次表层关键环境变量时空分布特征,作者采用2007~2012年Argo剖面浮标数据,分析了太平洋大眼金枪鱼和黄鳍金枪鱼延绳钓主要作业渔场区温跃层特征参数、12℃和距表层海温8℃(Δ8℃)等值线信息。研究表明,温跃层上界深度和温度以及Δ8℃等深线具有明显的季节性变化。温跃层上界深度呈现出冬深、夏浅的季节性变化特征,大致呈纬向带状分布。1~3月份,北太平洋从东到西温跃层上界深度值都超过90 m,同期10°S以南的海域均低于60 m;7~9月份则相反。在太平洋150°W以西,20°S~20°N区域,温跃层上界温度全年在28℃以上。8℃等深线显示在东部太平洋,一块低值区域(150m)由东海岸向西海岸延伸;在20°N以北和20°S以南的高值区域(250m)表现出冬深、夏浅的季节性变化特征。温跃层下界深度图显示有两块高值区域(深度大于280m)从西向东,由低纬度向高纬度漂移;在东部太平洋,两个高值区域之间的纬向区域常年存在一块下界深度低值区域(140m)。与下界深度类似,温跃层下界温度也有两块低温区域(12℃)从西向东,由低纬度向高纬度漂移。在该低温区域的外侧舌状区域,下界温度超过17℃;东部太平洋在13~15℃。在15°N以北和15°S以南12℃等深线超过400 m,呈舌状;赤道东部太平洋,一块300 m深的细长舌状区域由东向西延伸。在上述区域之间,12℃等深线的深度值低于200 m。温跃层下界深度和温度,以及12℃等深线则没有明显的季节性变化。分析结果初步揭示了太平洋金枪鱼主要作业渔场温跃层上界温度、12℃和Δ8℃等值线信息分布特征,为金枪鱼实际生产作业提供理论参考。  相似文献   

9.
采用2007 ~2011年Argo浮标剖面温度资料研究了大西洋黄鳍金枪鱼(Thunnus albacares)和大眼金枪鱼(Thunnus obesus)延绳钓主要作业渔场温跃层的时空变化特征.研究结果表明热带大西洋黄鳍金枪鱼、大眼金枪鱼延绳钓主要作业渔场温跃层的上界深度和温度存在着明显的季节性变化.温跃层上界深度呈现出冬深夏浅的季节性变化特征,大致呈纬向带状分布,12月至翌年4月份,15°N以北海域温跃层上界深度超过80 rn,同期10°S以南海域的多低于50 m;6~10月份的则相反.在赤道纬向区域温跃层上界温度在27℃以上,往南北两侧30°区域温度值依次递减至20℃及以下.温跃层下界深度和温度没有明显的季节性变化.温跃层下界深度高值区域的空间分布呈现“W”形状,深度值在220 m以上.在25°S以南,从南美洲到非洲西沿岸海域并延伸到安哥拉外海,以及10°N非洲西海岸外海,在1a中的大部分月份里,温跃层下界深度浅于150 m.在15°N以北和15°S以南区域下界温度大于15℃,在这之间的纬向区域下界温度低于14℃.全年在大西洋西部的5 °~ 15°N和5 °~15°S区域的温跃层厚度最大,在80~150 m之间,冬季和夏季呈现相反的分布特征;温跃层强度高值在5°S~ 15°N纬向区域,尤其是大西洋东部,介于0.15 ~ 0.25℃/m之间.根据文中揭示的大西洋金枪鱼延绳钓主要作业渔场区温跃层的时空变化特征,作者建议晚上大眼金枪鱼和黄鳍金枪鱼投钩深度应该在温跃层上界深度分布的附近水域;白天捕捞黄鳍金枪鱼投钩深度应该在温跃层下界深度分布的水域附近,大眼金枪鱼投钩深度要比黄鳍金枪鱼的更深.  相似文献   

10.
对南沙海区水深2772m的ODP1143站100~150m井段共101块沉积样品进行了浮游有孔虫分析,结果表明,从3.27Ma到2.55Ma该区表层海水温度逐步降低,温跃层逐步加深,推测是晚上新世北半球冰盖形成过程中,东亚季风相应加强的结果。与此同时,南沙与南海北部的温跃层深度差值不断加大,可能是西太平洋暖池最终形成或加强的表现。3.2Ma前后,表层海水温度和海水温跃层深度都发生了急剧变化,反映出北半球冰盖和西太平洋暖池的发育可能存在一定的相关性。  相似文献   

11.
On the bisis of determining the there elements of themocline ( depth [upper bound depth ], thickness and intensity ) and the maximum vertical temperature gradient of the surveying station, the paper calculates the mean temperature of the Nansha deep-water surveying station within the upper-bound depth layer of thermocline and the mean temperature below the lowerbound depth of thermocline between the 300m and 800m layers,respectively. Analysis indicates that the horizontal distribution of mean seawater temperature shows a distinct trend of the lowtemperature seawater slowly moving from tbe northeast to the southeast of Nansha,which seems to have been driven by the Northeast Monsoon. The larger the vertical temperature radient is, the greater is its capability of preventing the heat of the upper seawater from diffusing into the deeper layers on the vertical direction.  相似文献   

12.
2011年春、夏季黄、东海水团与水文结构分布特征   总被引:7,自引:5,他引:2  
根据2011年春季(4月)夏季(8月)两个航次调查的CTD温盐资料,获得观测期间黄、东海主要水团特征:(1)夏季黄海冷水团10℃等温线在黄海海域中部30m以深,影响范围西至122°E南至34°N,最低温度为6.2℃,比气候态平均冷水团温度低约2℃;(2)夏季冲淡水以长江口为中心,呈半圆形向外扩展,并无明显NE转向,30.00等盐线在32°N断面上东至124°E,南至29.5°N,扩展范围与往年相比偏西1°左右,而在SE方向较往年有明显延伸扩展。水文结构特征为:(1)春季,温跃层主要在南黄海中部以西,跃层强度仅为0.10—0.40℃/m;密跃层主要在长江口以东,跃层强度0.20—0.30kg/m4;(2)夏季,温跃层强度最高值在长江口东北,跃层强度达到2.41℃/m,上界深度5.5m,厚度2.5m;黄海温跃层强度普遍强于东海,主要是冷水团区域表底显著的温度差异造成;密跃层强度高值区在33°N断面西侧海区,强度达到1.38kg/m4,上界深度5.5m,厚度约为1.5m;沿长江冲淡水舌轴方向的密跃层强度为0.30—0.60kg/m4,自西向东逐渐减弱。  相似文献   

13.
刘兴泉 《海洋与湖沼》1998,29(1):97-103
冬季沿岸海区温度和盐度的数值计算结果表明:温度在近岸近表层大致呈垂直均匀分布,外海近表层形成较强的温跃层,近岸至外海的下层保持冷水特征。表层和底层盐度高,中层盐度低,在中层形成自近岸伸向外海且盐度逐渐由低变高的低盐水舌,河口冲淡水区形成较强的盐跃层。随着自南往北海区水深的逐渐变浅、岸界坡度的由大变小和沿岸下降流的由强变弱,近岸温度和盐度的垂直分布越来越均匀,外海近表层的温跃层强度越来越弱。盐度自南至河口区逐渐由高变低,而自河口区至北逐渐由低变高。沿岸下降流使河流冲淡水区的益跃层变厚。  相似文献   

14.
南海暖水形态特征   总被引:7,自引:1,他引:7  
利用Levitus资料 ,分析了南海各月某些标准层上的海温水平分布、南北向温度断面垂直分布 ,阐述了南海暖水水平和断面温度分布的阶段性特征 ,给出了南海暖水中心点 ( 1 1 3°E ,8°N)海温垂直结构特征。使用 3次自然样条函数 ,将格点资料插值到每米的深度上 ,求出各格点 2 8℃海温的深度 ,得出各月 2 8℃等温包络面。结果表明 :4~ 1 1月份 2 8℃等温包络面呈现大小不等和深浅不同的盆状 ,其各月的变化形象化地表示了暖水的演变过程。分析南海暖水中心点各标准层温度的季节变化表明 :30m以上海水温度季节变化基本一致 ,冬季 1月最低 ,春季 5月最高 ,次高出现在 1 0月份 ;50m海水温度最低值延至 3月份 ,最高在 7月份 ,次高也在 1 0月份。 2 8℃等温包络面所包体积的季节变化是一个较为规则的单峰型  相似文献   

15.
作者在1990~1993年的夏季(1~2月)对南极普里兹湾海域4个航次的综合调查中发现,25~50m层中普遍存在着溶解氧垂直分布最大值,其位置在温跃层的下界附近,而温跃层强度分布趋势与溶解氧最大值趋势相类似。作者认为温、密跃层的强弱是产生溶解氧最大值的先决条件。海冰冰况的时空变化是影响溶解氧表层量值的重要因素。  相似文献   

16.
基于西北太平洋Argo数据资料,利用参数化方法,从Argo温盐剖面数据中提取出一系列特征动力参数,定量分析黑潮延伸体海域水体的三维热结构的时-空变化特征、季节变化特征及其与地形和环流的关系.结果表明:黑潮延伸体海域水体的海表面温度存在着明显的冬春弱,夏秋强的季节变化特征,冬季平均海表面温度为15℃,夏季则达到了27℃;...  相似文献   

17.
南海混合层年循环特征   总被引:22,自引:4,他引:22  
通过分析Levitus1994版气候平均温盐资料,得到南海混合层的时空分布特征,剖析了混合层浓度及其内部温度的季节变化规律。资料分析表明:季风通风流场调整对南海混合层的时空分布着明显的影响。这种影响的复杂性在于它不但通过海洋表层Ekman效应来影响混合层深度,而且还通过大尺度环流造成的幅散或辐合来限制或促进混合层深度的发展。研究发现混合层深度与混合层内温度存在着如下关系:夏季最大混合层的形成是28℃等温线与混合层底达到相互贴合的过程;冬季最大混合层的形成是28℃水体完全消失并且等温度线与混合层达到相交最多、相交最为垂直的过程,这时对应着冬季南海北部温跃层的通风;大于或等于28℃的水体总是位于混合层以内。  相似文献   

18.
南海不同海区叶绿素a和海水荧光值的垂向变化   总被引:1,自引:0,他引:1  
本文根据1985—1990年的实测资料,探讨南海某些海区叶绿素a和海水荧光值的垂向变化特征及其与某些环境因子的关系。结果表明,南海南部、东沙群岛附近(夏季)、巴士海峡西部和台湾海峡南部海区的叶绿素a和荧光值的垂向变化曲线以单峰型为主,次表层出现较高值,认为与温跃层、营养盐和溶解氧的垂直梯度有关。采用最小二乘拟合法,得出南海南部和东沙群岛附近海区叶绿素a和荧光值的垂向变化计算公式。  相似文献   

19.
数值模拟结果表明: 冬季长江口及其邻近海区温度分布为近岸低, 外海高; 近岸和海底地形变化缓慢区温度呈垂直均匀分布, 海底地形变化显著的陡坡区生成温度锋; 外海深水区的中上层温度低且呈垂直均匀分布, 底层温度高并形成弱的分层。春季, 近岸温度高、外海低; 近岸温度大致呈垂直均匀分布, 外海出现明显分层; 长江口以北温度表层低、底层高; 长江口及其以南表层和底层温度低, 而中层高; 陡坡区至外海生成温度锋, 随着温度锋自陡坡至外海的下移,锋面以上温度逐渐变为垂直均匀分布, 而锋面以下温度却大致呈水平均匀分布。夏季, 海区的温度分布和春季一样, 为近岸高、外海低; 长江口及其以南近岸浅水区温度呈垂直均匀分布; 长江口以北和长江口及其以南的外海温度自表层至底层由高变低且大致呈水平均匀分布, 并在表层至次表层生成强温跃层, 跃层强度随水深增加迅速减弱, 深底层温度几乎呈均匀分布且保持低温特征。秋季, 海区的温度分布与冬季相同, 也为近岸低, 外海高; 在长江口以北, 近岸温度为表层高, 底层低; 外海底层温度低且大致呈水平均匀分布, 而底层以上温度高且大致呈垂直均匀分布; 长江口及其以南, 近岸温度呈垂直均匀分布, 陡坡至外海的表层至底层生成弱的温度锋,随温度锋自陡坡至外海的下移, 锋面以上温度逐渐变为垂直均匀分布, 长江口以南陡坡区的底层温度几乎呈均匀分布。  相似文献   

20.
黄海溶解氧垂直分布的最大值   总被引:31,自引:8,他引:31  
顾宏堪 《海洋学报》1980,2(2):70-79
海洋溶解氧垂直分布中的最大值,正如最小值一样,亦为溶解氧垂直分布中的一个突出的现象.对于这一现象,不同的研究者作出了不同的解释.Thompson在太平洋北部及东北部25-50M处观测到氧最大值层,他们认为这一氧最大值层,是与光合带相适应的.对鄂霍次克海中氧的最大值的形成,绘出了一个假设的图,认为夏季氧垂直分布中的最大值,是由于在跃层形成时期,浮游植物光合作用时,大量的氧从上面渗入到稍下的层内,随着增温时该处稳定密度层的形成,垂直交换困难,因而氧即被保持下耒,形成了夏季最大值.Ichiye认为,密度跃层中的氧最大值,是由于氧的涡动扩散,要进行得比热的涡动传导为慢的缘故.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号