首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The formation and distribution of fractures are controlled by paleotectonic stress field,and their preservative status and effects on development are dominated by the modern stress field. Since Triassic,it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N,NE-SW,E-W,and NW-SE directions respectively. At the end of Triassic,under the horizontal compression tectonic stress field,for which the maximum principal stress direction was NW-SE,the fractures were well developed near the S-N faults and at the end of NE-SW faults,because of their stress concentration. At the end of Cretaceous,in the horizontal compression stress fields of the NE-SW direction,the stress was obviously lower near the NE-SW faults,thus,fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene,under the horizontal compression tectonic stress fields of E-W direction,stress concentrated near the NE-SW faults and fractures developed at these places,especially at the end of the NE-SE faults,the cross positions of NE-SW,and S-N faults. Therefore,fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults,the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction,the NW-SE fractures were mainly the seepage ones with tensional state,the best connectivity,the widest aperture,the highest permeability,and the minimum opening pressure.  相似文献   

2.
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW–SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE–WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.  相似文献   

3.
张岳桥  施炜  廖昌珍  胡博 《地质学报》2006,80(5):639-647
基于对鄂尔多斯盆地西南缘构造带、中央断裂、东缘边界带和东北部地区的断裂几何特征、运动学及其活动期次的野外观察和测量,并根据断层面上滑动矢量的叠加关系和区域构造演化历史,确定了鄂尔多斯盆地周边地带晚中生代构造主应力方向、应力体制及其转换序列,提出了4阶段构造演化模式和引张-挤压交替转换过程。早中侏罗世,盆地处于引张应力环境,引张方向为N-S至NNE-SSW向。中侏罗世晚期至晚侏罗世,构造应力场转换为挤压体制,盆地周缘遭受近W-E、NW-SE、NE-SW等多向挤压应力作用。早白垩世,盆地构造应力场转换为引张应力体制,引张应力方向为近W-E、NW-SE和NE-SW向。早白垩世晚期至晚白垩世,盆地应力体制再次发生转换,从前期的引张应力体制转换为NW-SE向挤压应力体制。晚中生代构造应力体制转换和应力场方向变化不仅记录了不同板块之间汇聚产生的远程效应,同时记录了盆地深部构造-热活动事件,并对盆地原型进行了一定的改造。  相似文献   

4.
受控于印度-亚洲碰撞的远程效应,中亚地区的晚新生代挤压冲断构造异常发育,同时发育少量区域挤压构造背景下派生的局部伸展构造。以往的研究没有发现晚新生代区域性伸展构造。我们通过认真、系统的地震资料解释,在塔里木盆地发现一系列上新世晚期-更新世早期的正断层。这些正断层主要分布于塔里木盆地西部的阿瓦提坳陷、巴楚隆起、麦盖提斜坡以及塘古孜巴斯坳陷。正断层走向NW-SE和NE-SW,剖面上组合成堑-垒构造,仅塔里木盆地西北缘沿沙井子断裂带分布的上新世晚期-更新世早期正断层带组合成负花状构造,显示出张扭性断层带的特征。根据生长指数计算,正断层活动的起始时间是上新世晚期(ca.3 Ma),持续演化至更新世早期(ca.2 Ma),然后停止活动。这些正断层形成于一个弱的区域性伸展构造背景;这期正断层活动代表印度-亚洲碰撞远程效应下,中亚地区脉动挤压冲断过程中的一个构造间歇期。  相似文献   

5.
以渤海湾地区Z油田沙一下生物灰岩油藏为例, 利用岩心、薄片及成像测井等资料, 对天然裂缝特征及控制因素进行研究, 并对裂缝的成因机理进行了分析.研究表明, Z油田沙一下生物灰岩储层主要发育构造裂缝及成岩裂缝两种类型, 其中构造裂缝又分为剪切裂缝及扩张裂缝两类; 大多数构造裂缝为高角度缝, 主要方位为北东-南西向、北西-南东向及近东西向; 裂缝纵向高度一般小于170 cm, 裂缝平面长度主要分布在35 m以内, 裂缝开度主要在100 μm以内; 裂缝的发育受岩性、岩层厚度、断层等地质因素控制.该区构造裂缝主要在始新世-渐新世裂陷中后期北西-南东向引张应力场及东营末期北东东-南西西向反转挤压应力场两期构造应力作用下形成, 其中早期主要形成北东-南西向的正断层型裂缝, 晚期主要形成北东-南西向、北西-南东向的剪切裂缝及近东西向扩张裂缝.  相似文献   

6.
The Cannanore district and the adjoining areas mainly comprise of charnokites, gniesses, high and low-grade schists and various types of igneous intrusives. The lineament fabric of the region indicates that the NNW-SSE, NW-SE, ENE-WSW and NE-SW lineament directions are prominent. It is suggested that the area has undergone at least three distinct phases of tectonic activity. The NW-SE and ENE-WSW lineaments appear to have formed during the phase of NW-SE folding. The NE-SW lineaments may be the result of the cross-folding of the earlier folds. The NNW-SSE lineaments have been related to the Precambrian tectonic activity in South India.  相似文献   

7.
The Elbe Fault System (EFS) is a WNW-striking zone extending from the southeastern North Sea to southwestern Poland along the present southern margin of the North German Basin and the northern margin of the Sudetes Mountains. Although details are still under debate, geological and geophysical data reveal that upper crustal deformation along the Elbe Fault System has taken place repeatedly since Late Carboniferous times with changing kinematic activity in response to variation in the stress regime. In Late Carboniferous to early Permian times, the Elbe Fault System was part of a post-Variscan wrench fault system and acted as the southern boundary fault during the formation of the Permian Basins along the Trans-European Suture Zone (sensu [Geol. Mag. 134 (5) (1997) 585]). The Teisseyre–Tornquist Zone (TTZ) most probably provided the northern counterpart in a pull-apart scenario at that time. Further strain localisation took place during late Mesozoic transtension, when local shear within the Elbe Fault System caused subsidence and basin formation along and parallel to the fault system. The most intense deformation took place along the system during late Cretaceous–early Cenozoic time, when the Elbe Fault System responded to regional compression with up to 4 km of uplift and formation of internal flexural highs. Compressional deformation continued during early Cenozoic time and actually may be ongoing. The upper crust of the Elbe Fault System, which itself reacted in a more or less ductile fashion, is underlain by a lower crust characterised by low P-wave velocities, low densities and a weak rheology. Structural, seismic and gravimetric data as well as rheology models support the assumption that a weak, stress-sensitive zone in the lower crust is the reason for the high mobility of the area and repeated strain localisation along the Elbe Fault System.  相似文献   

8.
The Manning Group is characterised by rapidly filled strike-slip basins that developed during the early Permian along the Peel--Manning Fault System in the southern New England Orogen. Typically, the Manning Group has been difficult to date owing to the lack of fossiliferous units or igneous rocks. Thus, the timing of transition from an accretionary convergent margin in the late Carboniferous to dominantly strike-slip tectonic regimes that involved development and emplacement of the Great Serpentinite Belt (Weraerai terrane) is not well constrained. One exception are rhyolites of the Ramleh Volcanics that were erupted into the Echo Hills Formation. These developed along the dextral Monkey Creek Fault splay east of the Peel--Manning Fault System. Zircons extracted from the Ramleh Volcanics yield a U–Pb (SHRIMP) age of 295.6?±?4.6?Ma that constrains the minimum age of deposition in this basin to earliest Permian. Whole-rock geochemistry indicates these are peraluminous felsic melts enriched in LREE and incompatible elements with strong depletions in U, Nb, Sr and Ti. These are similar in age and composition to the nearby S-type Bundarra and Hillgrove plutonic supersuites. We suggest that extensive movement along the east-dipping Peel--Manning Fault System was responsible, not only for strike-slip basin development at the surface (Manning Group), but was also the locus for crustal melting that was responsible for generating S-type felsic melts that utilised hanging-wall fault splays as conduits to the surface or to coalesce in the crust as batholiths exclusively to the east of the Peel--Manning Fault System.  相似文献   

9.
《Geodinamica Acta》1999,12(3-4):201-211
Three large (kilometric-scale) caves were studied in the Buda hills and the main directions of cave corridors, fault planes and mineralized veins were measured. Different stages of mineralizations are recognised: calcite scaleno-hedrons, baryte, silica, gypsum. New investigations of fluid inclusions in the baryte suggest a crystallization temperature of 50 °C and a freshwater fluid source. Microtectonic analysis allows the reconstruction of the successive tectonic events: (1) a NE-SW extensional phase at the Late Eocene-Early Oligocene limit (phase I), (2) a strike-slip phase with NW-SE compression and NE-SW extension during the Late Oligocene-Early Miocene (phase II), (3) a NW-SE transtensional phase (phase III) and finally (4) a NE-SW extensional phase of Quaternary age (phase IV). The major phase is the strike-slip one, characterized by an important dextral strikeslip zone: the Ferenc-hegy zone.  相似文献   

10.
石卓  金旭  管彦武  陈晓冬 《世界地质》2010,29(3):485-489
赤峰热水镇地热田内发育有南北向、北西—南东向、北东—南西向及东西向断裂构造,这些断裂大部分为张性断裂,并构成地热田热水上升的主要通道。热水的补给区在远离地热田的西部和北部山区,天水从此处渗透到地下深处,缓慢流动到地热田下部,被侵入的花岗岩和玄武岩所构成的热源以热传导方式加热,再沿断裂、裂隙上升,形成了地热田浅部热水储集层。本地热田热水属于天水起源的中、低温裂隙水。  相似文献   

11.
童家院锑矿床广泛发育地下空洞,影响矿山开采。本文根据矿田构造和矿化特征研究,认为本区至少经受过两期构造应力作用。成矿前,在左旋水平扭动作用下,形成NE向锡矿山复式背斜、纵向逆断层和矿化空洞,成矿后,在NE向挤压应力下,产生了NW向叠加褶皱以及正断层。同时,该应力场所控制的层间破碎带和背斜,大大影响了地下空洞的成生和分布。  相似文献   

12.
闹阳坪锌萤石矿床位于北大巴山逆冲推覆褶皱带平利隆起东侧,为该区首次发现的受构造裂隙控制的气水–热液型锌萤石矿床。本文从矿区断裂入手,通过对该区矿床地质、断裂特征、矿体特征的研究,总结了该区断裂的演化序列及其对成矿的控制机制与规律。认为NW-SE向断裂组是矿区的主要控矿构造,矿区断裂变形发育演化序列为晚印支–早燕山期形成近EW向断裂F1,早燕山期形成NW-SE向断裂F7和NE-SW向断裂F4,随后的右行走滑作用叠加有张扭性应力,形成有利于成矿热液运移充填成矿的张扭性右行走滑断裂。并明确了成矿期应变椭球体,恢复了成矿期主压应力方向为NNW向(340°~350°)。在此基础上,预测平面上闹阳坪矿区F7与F8断裂之间为下一步找矿重点地段,剖面上K3萤石矿体下伏北东方向可能存在隐伏矿体。  相似文献   

13.
The Gyeongsang Basin of southeastern Korea contains numerous Cretaceous-early Tertiary (120–40 Ma) granitoid intrusions formed at a convergent plate boundary. The geotectonic setting is similar to that associated with porphyry-type mineralization elsewhere in the Circumpacific region. However, erosion has removed higher-level economic mineralization and exposed deeper levels of the granitoids, representing the poorly mineralized “bottoms” of porphyry copper systems. The intrusions of the Gyeongsang Basin thus provide a unique opportunity to advance our understanding of magmatic-hydrothermal evolution in the roots of porphyry-type systems, below the level of economic mineralization.

The physical and chemical environment during crystallization of the magmas has been characterized through studies of silicate melt and aqueous fluid inclusions in the granitoids. Two different types of silicate melt inclusions were recognized based on occurrence and room-temperature appearance. Type-I inclusions contain one or more crystalline phases and vapor; type-II inclusions consist of a cluster of small crystals, partially devitrified glass, and vapor. Petrographic and Raman analyses indicate that most silicate melt inclusions contain muscovite daughter crystals. Some also contain feldspar. Solidus temperatures of type-I inclusions in quartz phenocrysts range from ≈630to 650°C, whereas solidus temperatures of type-I and type-II inclusions in vug quartz are slightly higher (640–670°C). Liquidus temperatures span a much wider range compared to solidus temperatures, with maximum liquidus temperatures of melts in phenocrysts being slightly higher (≤930°C) than those in vug quartz (≤910°C).

Three types of aqueous inclusions were observed based on occurrence and room temperature phase proportions. Type-A inclusions are liquid rich and low to moderate in salinity; type-B inclusions are vapor rich and low in salinity; type-C inclusions are liquid rich and contain a halite daughter mineral. Some type- A inclusions with a salinity of approximately 25 wt% NaCl equivalent are spatially associated with silicate melt inclusions in phenocrysts, where they occur as three-dimensional clusters of tiny inclusions surrounding the silicate melt inclusion. Type-A inclusions also occur along fractures in quartz phenocrysts. Non-fracture-controlled type-C inclusions are rare in phenocryst quartz, but are common in vug quartz, where they are associated with silicate melt inclusions. Type-C inclusions that coexist with silicate melt inclusions generally homogenize by halite dissolution after the vapor bubble and show a wide range in salinity, from about 30 to >60 wt% NaCl equivalent. Coexisting halite-bearing (Type-C) and vapor-rich (Type-B) inclusions in phenocryst quartz suggest local immiscibility in the late-or post-magmatic fluid.

Pressure-temperature conditions during the final stages of magmatic-hydrothermal activity associated with the granitoid intrusions of the Gyeongsang Basin were approximately 630° to 670° C and 1.9 to 2.5 kbars. These results suggest that the granitoids do not contain economic porphyry coppertype mineralization because the magmas crystallized at high pressures (relative to typical porphyry copper magmas) and did not become saturated in water until a relatively late stage in the crystallization history. Failure to reach water saturation resulted in most of the copper in the original melt being sequestered as a trace component in earlier-crystallizing silicate and sulfide phases to produce anomalous but subeconomic copper grades. Furthermore, owing to the depth of emplacement, less energy was available to fracture the rocks when water did exsolve from the magma, and the pressure remained too high for aqueous fluid immiscibility to be an important metal-concentrating or depositing mechanism. Geological, petrographic, and geochemical characteristics suggest that the granitoid rocks of the Gyeongsang Basin represent ethroot zones of porphyry-type systems, and any higher-grade mineralization that may have been present higher in the system has since been removed by erosion.  相似文献   

14.
汉南地区晋宁晚期铜-金成矿事件的确认及意义   总被引:1,自引:0,他引:1  
汉南地区位于扬子克拉通北缘西段。目前,在川、陕两省已在该区发现了数十个矿床(点)。其中,广泛分布的铜-金矿床(点)具有热液型矿化特征,成矿条件有利,具有寻找大-中型矿床的远景。为了查明这些铜-金矿产资源的形成时代,文章运用LA-ICP-MS锆石U-Pb法和单矿物~(40)Ar/~(39)Ar法对汉南地区有代表性的矿床(点)进行了成矿年代学研究。其结果显示,潘坝成矿期热液脉的锆石U-Pb年龄为(744±10)Ma,黑云母和钾长石~(40)Ar/~(39)Ar视年龄介于740 Ma~700 Ma之间。元山寺的成矿期白云母~(40)Ar/~(39)Ar坪年龄为(744±4)Ma,等时线年龄为(748±7)Ma。由于本次测试选择了成矿期矿物,其结果可以代表成矿时代。因此,汉南很可能存在晋宁晚期的铜-金成矿事件。根据区域地质演化历史,笔者认为汉南铜-金矿化(744 Ma)是造山晚期加厚岩石圈下部(山根)拆沉的结果。  相似文献   

15.
Between the Late Jurassic and the Middle Miocene, widespread magmatism, tectonic events and hydrothermal mineralization characterized the geological evolution of the Atacama segment of the South American Andes. A characteristic feature of this zone is the coincidence in time and space between subduction-generated igneous activity, crustal deformation and mineralization in the magmatic arcs, which formed longitudinal belts migrating eastward.Mineralization in the last 140 Ma is generally restricted to four longitudinal metallogenic belts, in which hydrothermal activity was channelled along crustal-scale faults (1) the Atacama Fault System, along which Early Cretaceous Cu-Au-bearing breccia pipes, veins and stockwork were formed; (2) the Inca do Oro Belt, which contains Upper Cretaceous low sulphur precious metal epithermal mineralization, and Middle Eocene Cu-Mo-Au-bearing breccia pipes; (3) the West Fissure System, which hosts Upper Eocene to Early Oligocene porphyry copper deposits and high sulphur precious metal epithermal mineralization; and (4) the Maricunga Belt, when contains Upper Oligocene to Middle Miocene high sulphur precious metal epithermal deposits and Au-rich porphyry mineralization.  相似文献   

16.
梁承华  徐先兵  李启铭  桂林  汤帅 《地球科学》2019,44(5):1761-1772
华南中-新生代构造演化受太平洋构造域和特提斯洋构造域的联合控制.以江南东段NE-SW向景德镇-歙县剪切带和球川-萧山断裂中发育的脆性断层为研究对象,利用野外交切关系和断层滑移矢量反演方法厘定了7期构造变形序列并反演了各期古构造应力场,讨论了断层活动的时代及其动力学.白垩纪至新生代研究区7期古构造应力场分别为:(1)早白垩世早期(136~125Ma)NW-SE向伸展;(2)早白垩世晚期(125~107Ma)N-S向挤压和E-W向伸展;(3)早白垩世末期至晚白垩世早期(105~86Ma)NW-SE向伸展;(4)白垩世中期(86~80Ma)NW-SE向挤压和NE-SW向伸展;(5)晚白垩世晚期至始新世末期(80~36Ma)N-S向伸展;(6)始新世末期至渐新世早期(36~30Ma)NE-SW向挤压和NW-SE向伸展;(7)渐新世早期至中新世中期(30~17Ma)NE-SW向伸展.结合区域地质研究表明,第1期至第4期古构造应力场与古太平洋构造域的板片后撤、俯冲以及微块体(菲律宾地块)间的碰撞作用有关;第5期伸展作用受控于新特提斯构造域俯冲板片后撤,而第6期和第7期古构造应力场主要与印-亚碰撞的远程效应有关.白垩纪至新生代,华南东部受伸展构造体制和走滑构造体制的交替控制.先存断裂的发育可能是导致华南晚中生代走滑构造体制的主要控制因素.  相似文献   

17.
以中国大陆地壳应力环境基础数据库为基础,选取华北地区水压致裂法与应力解除法的实测地应力数据共计1 017条,得到华北地区及研究子区宏观应力场特征:(1)华北地壳浅层最大水平应力 、最小水平应力 随深度D呈线性增加;(2)在0~4 000 m测量深度范围内,华北各研究子区中间深度 值总体表现出“东高西低”的特征;(3)华北地区侧压系数Kav=225/D+0.61,浅部离散,随着深度增加而集中,并趋向0.61,D=577 m时Kav=1,是水平作用为主导向垂直作用为主导转换的“临界深度”;(4)华北各研究子区 的优势方向统计显示,华北东部研究区 优势方向基本上为近EW、NEE、NE向。鄂尔多斯块体及环鄂尔多斯的研究区 优势方向呈现出NE向或NEE向。华北平原的研究区 优势方向主要为NE、NEE向,部分研究区呈现出NW向。分析华北区域断层稳定性发现,500 m深度以下实测差应力值不超过理论临界值,区域内断层基本上处于相对稳定的状态;0~500 m深度之间部分差应力值已达到或接近走滑临界状态,在方位合适的断裂或节理面上发生走滑断层型活动的可能性较大。  相似文献   

18.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

19.
陈耀煌 《地质与勘探》2014,50(3):419-431
大坪金矿床位于哀牢山金矿带南部,为研究其规模最大的V1-2-3号矿体的控矿构造和矿化富集规律,本文研究总结了矿体地质特征,对矿体的多级控矿构造及力学性质进行剖析,采用矿体垂直纵投影图对厚度、品位及其剩余值、趋势值等值线图进行分析。研究结果表明:金矿主要受三级断裂构造控制:红河-哀牢山深大断裂控制整个金矿成矿带;小新街断裂为导矿构造;小新街断裂的次级断裂带为容矿构造。在构造应力机制发生转换的大规模成矿时期,矿区受到由顺时针旋转变为逆时针旋转的构造应力场作用,控矿断裂性质由左行压扭性转变为张性。构造应力场严格控制了矿体的空间位置、规模、形态、矿体厚度与品位变化特征。成矿流体运移方向为北西-南东方向,在多期、多阶段成矿作用下,形成层状分布矿化富集带。研究厘定了V1-2-3号矿体共有3个矿化富集带,包括7个矿化富集中心,其侧伏方向为北西-南东方向。矿化富集中心大多形成于构造引张的部位,形成透镜状富厚矿体;在构造闭合的地方,矿脉变薄、品位降低,形成贫化带或无矿段。  相似文献   

20.
根据地层层序特征 ,叠加在东秦岭造山带之上的泌阳凹陷伸展作用可以划分出 6个伸展作用幕。核二段沉积前泌阳凹陷以北东—南西向的伸展作用为主 ,构造变形受以正断层为主兼具左旋走滑分量的唐河—栗园断裂控制。核二段沉积期——廖庄组沉积末期构造应力场发生转变 ,以北西—南东向伸展作用为主 ,构造变形主要受以正断层为主兼具右旋走滑分量的泌阳—栗园断裂控制。断裂活动引起上盘构造变形 ,对先成构造进行改造。廖庄组沉积末期发生区域性的隆升作用 ,北西—南东向的伸展作用导致边界断裂上盘发生断块掀斜 ,地层遭受强烈剥蚀。核二段沉积以来尤其是廖庄组沉积末期 ,受北西—南东向不均匀伸展作用的影响 ,北西向走滑断层活动并影响盖层构造样式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号