首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical case study with a second-order turbulence closure model is proposed to study the role of urban canopy layer (UCL) for the formation of the nocturnal urban boundary layer (UBL). The turbulent diffusion coefficient was determined from an algebraic stress model. The concept of urban building surface area density is proposed to represent the UCL. Calculated results were also compared with field observation data. The height of the elevated inversion above an urban center was simulated and found to be approximately twice the average building height. The turbulent kinetic energy k, energy dissipation rate , and turbulence intensities u 2 and w 2 increase rapidly at the upwind edge of the urban area. The Reynolds stress uw displayed a nearly uniform profile inside the UBL, and the vertical sensible heat flux w had a negative value at the inversion base height. This indicates that the downward transport of sensible heat from the inversion base may play an important role in the formation of the nocturnal UBL.  相似文献   

2.
夜间城市边界层发展的数值研究   总被引:4,自引:0,他引:4  
叶卓佳  关虹 《大气科学》1986,10(1):80-88
本文使用非定常非线性二维数值模式,研究夜间气流流经城市热岛上空引起的风场、温度场和垂直涡旋扩散参数的调整以及城市热岛环流的发展演变.  相似文献   

3.
The formation mechanism of the nocturnal urban boundary layer (UBL), especially in the winter nighttime, was investigated based on the extensive field observations conducted during November 1984 in Sapporo, Japan. A strong, elevated inversion formed over the Sapporo urban area and the inversion base height was approximately twice the average building height. Velocity fluctuations u, w and Reynolds stress % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] had nearly uniform profiles within the nocturnal UBL and decreased with height above the UBL. On the other hand, temperature fluctuations t , and heat fluxes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG3bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B58!\[\overline {w^1 \theta ^1 } \] had peaks at the inversion base and small values within the nocturnal UBL. The turbulent kinetic energy budget showed that the turbulent transport term and shear generation from urban canopy elements are important in the nocturnal UBL development; the role of the buoyancy term is small. The turbulence data analysis and application of a simple advective model showed that the mechanism of UBL formation may be controlled by the downward transport of sensible heat from the elevated inversion caused by mechanically-generated turbulence.Nomenclature g accelaration due to gravity, m s-2 - k turbulent kinetic energy, m2 s-1 - K m eddy viscosity, m2 s-1 - L Monin-Obukhov lenght, m - p pressure, Kg m-2 - U, V, W mean wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - u 1, w 1 wind speed fluctuation in the downwind and vertical direction, respectively, m s-1 - u 1 friction velocity, m s-1 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] momentum flux, m2s-2 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 \theta^1 } \] sensible heat flux, m2s-1°C - WD wind direction, deg - WS wind speed, m s-1 - z altitude, m - Z h inversion base height, m - Z j wind maximum height, m - Z t inversion top height, m - T u-r heat island intensity, °C - temperature lapse rate at rural site, °C m-1 - energy dissipation rate, m2s-3 - 1 Potential temperature fluctuation, °C - * scaling temperature, (=-% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \]/u*) °C - mean potential temperature fluctuation, K - density of air, Kgm-3 - K von Kármán constant (=0.4) - u, v, w standard deviation of wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - standard diviation of temperature, °C  相似文献   

4.
本文考虑在水平均匀条件下,利用一维非定常模式研究大气夜间边界层的结构和发展规律。考虑地面的降温率是时间的函数。地转风为常数。 用中性层结条件下的计算值作为时间积分的初值,计算了夜间边界层发展的变化规律。得到了夜间地面冷却条件下逆温层的形成和发展以及低空急流建立的典型图象,最后对几种参数进行了计算、分析和比较。  相似文献   

5.
In this paper, a second-order model is proposed for the study of the evolution of the nocturnal boundary layer (NBL). The model is tested against the Wangara data on atmospheric boundary layer. The computer results show ihat the model can simulate some important characters observed in the NBL, and that a kind of sudden change may occur in the developing process of NBL.  相似文献   

6.
Seventy-five nights of fast-response wind and temperature data taken from a 300 m tower near Augusta, GA, were analyzed to determine the time-height structure of the nocturnal planetary boundary layer. The nights were selected from all four seasons over a wide range of synoptic conditions. Statistical summaries of Pasquill-Gifford stability, boundary-layer depth, nocturnal jet height, directional shear, gravity wave occurrence, and azimuthal meandering were obtained. The diversity of nocturnal conditions for the 75 cases resulted in histograms with broad peaks and slowly-varying distributions.To reduce the overall variance, we grouped the nights into two classes: steady nights and unsteady nights. Nights classified as steady maintained relatively uniform wind conditions. The data base was large enough to permit a further breakdown of the steady nights into three subclasses based on the height and strength of the wind maximum. Unsteady nights were more disturbed, showing time-dependent features in the wind field and were also divided into three subclasses, depending on the predominant features observed: microfrontal passage, trend, or variable conditions. Although the subclasses were based mainly on wind structure, they correlated well with other NPBL properties, such as mixed-layer depth and inversion strength. Thus, the classification procedure tended to group together nights with similar dispersion characteristics.  相似文献   

7.
Low-latitude observations of the stably-stratified planetary boundary layer (SBL) above rough terrain are compared to observations of the mid-latitude SBL mainly through the depth h and its dependence upon surface fluxes. This involves the quantity h/L and the similarity prediction h = (u * L/f)1/2.Mid-latitude observations are consistent with model calculations for nighttime-averaged quantities and their deviations, as functions of latitude and surface roughness, from the equilibrium values found at large t. The above applies to horizontally-homogeneous terrain.Low-latitude observations of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbae% baaaa!37AB!\[\bar \gamma \] and h/L are significantly smaller than mid-latitude values, apparently the result of katabatic flows at the site and not the differences in latitude. This is consistent with model calculations for non-zero slope terrain.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
An observational study of the structure of the nocturnal boundary layer   总被引:3,自引:0,他引:3  
In an effort to describe the basic vertical structure of the nocturnal boundary layer, observations from four experiments are analyzed. During the night, the depth of significant cooling appears to increase with time while the depth of the turbulence and height of the low level wind maximum tend to remain constant or decrease with time. Since the inversion layer extends above the low level wind maximum and shear is small in the region of the low level jet, the Richardson number reaches a maximum at the jet level and then decreases again with height. As a result, turbulence is observed to be a minimum at the height of the low level wind maximum and then increases again above this height.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Part of this work was performed while a visiting scientist at Oregon State University.  相似文献   

9.
The evolution and structure of a steady barotropic nocturnal boundary layer are investigated using a higher-order turbulence closure model which includes equations for the mean quantities, turbulence convariances, and the viscous dissipation rate. The results indicate that a quasi-steady nocturnal PBL might be established in 4–10 hours after transition, depending on surface cooling rate. The latter is assumed to be constant in the model. The emphasis is on prediction of eddy viscosity, nocturnal mixing-layer depth, and the stability-dependent universal functions in the geostrophic drag and heat transfer relations. The model predictions are parameterized in the framework of the PBL similarity theory and compared with observations and results of other models.Affiliation with Oak Ridge Associated Universities (ORAU).  相似文献   

10.
AnAnalyticalStudyontheUrbanBoundaryLayer①①ThisprojectwassupportedbyLASG,ChineseAcademyofSciences.LinNaishi(林乃实),ZhouZugang(周祖...  相似文献   

11.
Velocity and signal intensity data during stable conditions in the nocturnal boundary layer (NBL) were obtained with a minisodar on two consecutive nights with similar mean conditions. There was little turbulence activity during the first night, but during the second night, continuous background Kelvin-Helmholtz waves and instabilities having a 2-min period grew and penetrated above the mean NBL height at approximately 60-min intervals. Enhanced ozone concentrations at the surface occurred during the active periods even though most mean meteorological parameters were unchanged. Vertical profiles of vertical velocity standard deviation, dissipation rate, and temperature variance destruction rate in the NBL were measured and analyzed separately according to levels of turbulence activity. Well-defined differences between inactive and active periods of a factor of two to four were found for each parameter. The temperature structure parameter flux was large and in opposite directions in the upper and lower part of the NBL during active periods of turbulence, but small during other periods.  相似文献   

12.
A case study of the structure of the nocturnal boundary layer (NBL) over complex terrain is presented. Observations were made during the third night of Project STABLE (Weber and Kurzeja, 1991), whose main goal was to study turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia.The passage of a mesoscale phenomenon, defined as a turbulent meso-flow (TMF) with an explanation of the nomenclature used, and a composite structure of the lowest few hundred meters over complex terrain are presented. The spatial extent of the TMF was at least 30–50 km, but the forcing is not well understood. The TMF occurred without the presence of a synoptic-scale cold front, under clear conditions, and with no discernible discontinuity in a microbarograph pressure trace. The structure of the NBL over the complex terrain at SRS differed from the expected homogeneous terrain NBL. The vertical structure exhibited dual low level wind maxima, dual inversions, and a persistent elevated turbulent layer.The persistent elevated turbulent layer, with a spatial extent of at least 30 km, was observed for the entire night. The persistent adiabatic layer may have resulted from turbulence induced by shear instability.  相似文献   

13.
In this paper, several methods of incorporating anthropogenic heat release into the boundary layer are compared. The best scheme was one that included anthropogenic heat release in both the surface energy balance equation and the thermodynamic equations. In addition, it included diurnal variations and a distribution of heat based on building concentrations. We further investigated the influence of anthropogenic heat release on urban boundary layer structure and the urban heat island, and found that the contribution of anthropogenic heat release to the urban heat island is greatest in the evening and at night, and least at noon. The daily average contribution ratio of anthropogenic heat to urban heat island intensity in the winter is 54.5%, compared with just 43.6% in the summer. Anthropogenic heat strengthens the vertical movement of urban surface air flow, changing the urban heat island circulation. It also makes the urban boundary layer more turbulent and unstable, especially in the morning and evening. The degree of influence of anthropogenic heat release on local boundary layer structure depends on its importance to the surface energy budget.  相似文献   

14.
Large eddy simulation and study of the urban boundary layer   总被引:6,自引:1,他引:6  
  相似文献   

15.
Convective plume patterns, characteristic of clear sky and light wind daytime boundary layers over land, were observed for two nights with a tri-axial Doppler sodar operated in the central area of Rome during the summer of 1994. An urban heat island effect, combined with a continuation of a breeze from the sea late into night during both days, is believed to be responsible for the observed nocturnal convection. Estimates of the surface heat flux and the vertical velocity scaling parameter are obtained from profiles of vertical velocity variance, and the Raman lidar water vapor measurements are used to obtain the humidity scaling parameter. Convective scaling results for vertical wind and humidity fairly agree with the results of other experiments and models. On the basis of available measurements, it appears that mixed-layer similarity formulations used to characterize the daytime convective boundary layer over horizontally homogeneous surfaces can also be applied to the nocturnal urban boundary layer during periods of reasonable convective activity.  相似文献   

16.
The stable boundary layer which evolved over the lowland of Northern Germany during a clear night with moderate geostrophic winds is studied. Because of the lack of turbulence measurements, a vertical flux-profile of heat and momentum is derived from a mean wind and temperature profile using an integral method. The stability parameter h/L * = 17 indicates that turbulence was sporadic during this particular night. This result is confirmed by the observed inertial oscillations, which occur not only in the residual layer but also in the boundary layer below.The case study shows that turbulent cooling overrules radiational cooling in the lower part of the surface inversion layer. Additionally, warm-air advection occurs. In the upper part, cold-air advection and radiational cooling dominate, while turbulent cooling is reduced. Subsidence warming can be neglected throughout the boundary layer during this particular night.  相似文献   

17.
The structures and the vertical profiles of turbulent variance and covariance of the stably stratified boundary layer (SBL) are simulated with a second-order closure turbulence model. The results confirm that the vertical profiles of the dimensionless turbulence variance and covariance can be well represented by the form F = A(1 - Z / h)x. Here h is the height of SBL. and both exponent a and coefficient A are the functions of terrain, baroclinicity, radiation cooling and the state of temporal development of SBL. Comparing with Minnesota and Cabauw experiment data, we have analysed the value of a and expounded the main reasons that great difference in a exists among different literatures.  相似文献   

18.
A special-purpose radar has been used to observe the vertical distribution of large, strong-flying insects migrating in the nocturnal boundary layer over the central-western plains region of New South Wales. During the period of take-off flight at dusk, the density of insects decreased monotonically with height, and a distribution of this type persisted for much of the night in the zone of steady temperature lapse extending from the top of the inversion layer to the flight ceiling at about 1 km. Later in the night, the insects often became concentrated in the warm air at the top of the inversion layer. The lower boundary of this concentration sometimes became sharply defined, but above the zone of maximum insect density there was usually a smooth decrease of insect numbers with altitude. When the boundary layer was disturbed by an atmospheric density current, the direction and vertical distribution of the migration was permanently changed; solitary wave disturbances, however, had only a transient effect.  相似文献   

19.
Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation \(\Phi _M \left( {{z \mathord{\left/ {\vphantom {z L}} \right. \kern-0em} L}} \right) = \left( {{{1 + 5_Z } \mathord{\left/ {\vphantom {{1 + 5_Z } L}} \right. \kern-0em} L}} \right)\) according to $$\Phi _M^{\text{0}} \simeq \left( {{{1 + 5z} \mathord{\left/ {\vphantom {{1 + 5z} L}} \right. \kern-\nulldelimiterspace} L}} \right)\exp \left[ { - 0.7\left( {{{1 - z} \mathord{\left/ {\vphantom {{1 - z} z}} \right. \kern-\nulldelimiterspace} z}_ * } \right)} \right]$$ , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value (z *N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.  相似文献   

20.
An analytical framework is proposed for studying variations in the diurnal wind structure in the planetary boundary layer (PBL) and the evolution of the low-level nocturnal jet. A time-dependent eddy-diffusivity coefficient corresponding to solar input is proposed, and an appropriate coordinate transformation ensures that mixing height varies continuously with ground heat-flux changes. The solution exhibits the receding character of the daytime PBL as evening approaches, thereby dividing the PBL into two regimes — the one just above the ground, representing the nocturnal boundary layer, and the region above it. It is assumed that inertial oscillations (IO) are triggered in the upper layer at about the time of sunset when the reversal in the direction of ground heat flux is felt in the upper layer. Two approaches are adopted to determine the characteristic features of IO and the evolution of the nocturnal low-level jet. The first one is based on the physical principle that release of horizontal momentum due to deviation from the geostrophic wind gives rise to the IO. The solution captures all the characteristic features of the IO, such as phase shift and decreasing amplitude of the IO with increasing height. According to this analysis the IO is triggered at a level as soon as the top of the receding boundary layer leaves that level. The solution is discontinuous with respect to the vertical coordinate. In the second approach we solve an initial-value problem to determine the solution in the upper layer, assuming that at about the time of sunset there is a rapid collapse of the daytime PBL to the steady, nocturnal boundary layer. The assumption is based on the mixing-height profiles prepared from climatological data collected at Delhi. The solution for the nocturnal boundary-layer regime is then obtained as a boundary-value problem. The solutions so obtained are continuous throughout the domain of interest and exhibit the characteristic features of an IO. The analysis leads to the conditions under which a low-level nocturnal jet is produced and provides quantitative estimates of the parameters, such as length of night, latitude, mixing height at sunset and nocturnal mixing height, that are conducive to the generation of a jet. The nocturnal wind profile produced by this approach compares well both with typical atmospheric data observed at Delhi and with output from a mesoscale numerical model. There is still some uncertainty related to the time of initiation of the IO as a function of latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号