首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonstructural reinforced concrete flat walls architecturally designed as exterior/partition walls in concrete buildings were severely damaged by the 2011 earthquake off the Pacific coast of Tohoku. This damage was observed in the monolithic nonstructural flat walls of relatively old ductile concrete buildings. Although these flat walls might affect the overall seismic performance and behavior of a building, the nonstructural wall effects have not been clarified because of the complex interactions among the structural components. To understand these effects, this paper conducts an experimental and numerical investigation of the nonstructural wall effects, focusing on a typical residential building damaged by the 2011 earthquake. A single‐story, one‐bay moment‐resisting frame model of the building with a nonstructural flat wall was tested to clarify the fundamental behavior. The results reveal that the wall significantly contributed to the seismic performance of the overall frame until it failed in shear, subsequently losing structural effectiveness. Such experimental wall behavior could be simulated by the isoparametric element model. Moreover, the structural effects of the nonstructural flat walls on the global seismic performance and behavior of the investigated building were discussed through earthquake response analyses using ground motions recorded near the building site and pushover analyses. Consequently, the building damage could be simulated in an analytical case considering the nonstructural flat walls, showing larger inter‐story drifts in the lower stories due to softening of the walls. The analytical results also indicated that the softening of the nonstructural flat walls decreased the building ductility, as defined by ultimate inter‐story drifts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The paper contains a discussion of the inelastic dynamic magnification of seismic shear forces in cantilever walls with rectangular cross-sections. An extensive parametric study was performed in order to determine the reliability of the procedure in Eurocode 8 (EC8). A large number of single cantilever walls which are characteristic for the design practice in Europe and designed to satisfy all the EC8 requirements were analysed. The results obtained with the (modified) code procedures were compared with the results of inelastic response history analyses. If properly applied, the EC8 procedure for DCH walls usually yields good results for the base shears. However, as presently formulated and understood in the EC8, it can yield significantly incorrect results (overestimations of up to 40%). For this reason three modifications were introduced: (1) Keintzel’s formula, which is adopted in EC8, should be used in combination with the seismic shears obtained by considering the first mode of the excitation only; (2) the upper limit of the shear magnification factor should be related to the total shear force; and (3) a variable shear magnification factor along the height of the wall should be applied. The present procedure in EC8 for DCM structures (using a constant shear magnification factor of 1.5 for all walls) is non-conservative. For DCM walls it is strongly recommended that the same procedure as required for DCH walls be used.  相似文献   

3.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

4.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
地震带来的影响和危害引起了国际社会的共同关注,工程中的抗震设计越来越得到高度重视。本文就欧洲抗震设计规范Eurocode 8的内容进行了简要介绍,并专门针对Eurocode 8中岩土抗震设计部分从场地类型,地震反应谱,抗震设计基本原则和要求等方面与我国的抗震设计规范(GB 50011-2001)进行了阐述和对比,希望能增加读者对欧洲抗震设计规范的了解,同时为我国的岩土抗震设计简要提供参考和借鉴作用。  相似文献   

6.
For earthquake action the new design provisions of Eurocode 8 are in the process of replacing the European national earthquake codes. The paper treats the design and behaviour of multi-storey structural walls in view of the new provisions. For structural walls the provisions of the Eurocode 8 are compared with those of a national code which it is going to replace. As the national code the current Swiss earthquake standard SIA 160 is chosen. Basic design rules of both codes are introduced and compared by means of examples comprising buildings which are regular in plan and elevation and which use structural walls for lateral resistance. The height of the buildings is varied from a from four to eight storeys. In the example, both the SIA and the Eurocode design provisions are based on the static equivalent force method, and a triangular distribution of the lateral force. However, most other design provisions differ between the two codes. The structures designed are modelled numerically and subjected to non-linear time-history analysis. At first, both the SIA and Eurocode designed structures are subjected to ground motions compatible to the design spectra in the respective codes. Then all structures are subjected to a recorded ground motion. The results are discussed in view of assumptions made at the design phase. Conclusions and recommendations are provided. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Nonstructural components (NSCs) should be subjected to a careful and rational seismic design, in order to reduce the economic loss and to avoid threats to the life safety, as well as what concerns structural elements. The design of NSCs is based on the evaluation of the maximum inertia force, which is related to the floor spectral accelerations. The question arises as to whether Eurocode 8 is able to predict actual floor response spectral accelerations occurring in structures designed according to Eurocode 8. A parametric study is conducted on five RC frame structures in order to evaluate the floor response spectra. The structures, designed according to Eurocode 8, are subjected to a set of earthquakes, compatible with the design response spectrum. Time-history analyses are performed both on elastic and inelastic models of the considered structures. Eurocode formulation for the evaluation of the seismic demand on NSCs does not well fit the numerical results. Some comments on the target spectrum provided by AC 156 for the seismic qualification of NSC are also included.  相似文献   

8.
A growing attention has been addressed to the influence of infills on the seismic behavior of Reinforced Concrete buildings, also supported by the observation of damage to infilled RC buildings after severe earthquakes (e.g. L’Aquila 2009, Lorca 2011). In this paper, a numerical investigation on the influence of infills on the seismic behavior of four different case study buildings is carried out: four- and eight-storey buildings, designed for seismic loads according to the current Italian technical code or for gravity loads only according to an obsolete technical code, are considered. Seismic capacity at two Limit States (Damage Limitation and Near Collapse) is assessed through static push-over analyses, within the N2 spectral assessment framework. Different infill configurations are considered (Bare, Uniformly Infilled, Pilotis), and a sensitivity analysis is carried out, thus evaluating the influence of main material and capacity parameters on seismic response, depending on the number of storeys and the design typology. Fragility curves are obtained, through the application of a Response Surface Method. Seismic performance is also expressed in terms of failure probability, given a reference time period.  相似文献   

9.
For the first time after the finalisation of the European Norm for seismic design of buildings (Eurocode 8 – EC8),the performance of RC buildings designed with this code is evaluated through systematic nonlinear analyses. Regular 4-, 8- or 12-storey RC frames are designed for a PGA of 0.2 or 0.4 g and to one of the three alternative ductility classes in EC8. As the Eurocodes are meant to replace soon existing national codes, design and performance is also compared to that of similar frames designed with the 2000 Greek national codes. The performance of alternative designs under the life-safety (475 years) and the damage limitation (95 years) earthquakes is evaluated through nonlinear seismic response analyses. The large difference in material quantities and detailing of the alternative designs does not translate into large differences in performance. Design for either Ductility Class High (H) or Medium (M) of EC8 is much more cost-effective than design for Ductility Class Low (L), even in moderate seismicity. It is also much more cost-effective than design to the 2000 Greek national codes.  相似文献   

10.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   

11.
A procedure for displacement‐based seismic design (DBD) of reinforced concrete buildings is described and applied to a 4‐storey test structure. The essential elements of the design procedure are: (a) proportioning of members for gravity loads; (b) estimation of peak inelastic member deformation demands in the so‐designed structure due to the design (‘life‐safety’) earthquake; (c) revision of reinforcement and final detailing of members to meet these inelastic deformation demands; (d) capacity design of members and joints in shear. Additional but non‐essential steps between (a) and (b) are: (i) proportioning of members for the ULS against lateral loads, such as wind or a serviceability (‘immediate occupancy’) earthquake; and (ii) capacity design of columns in flexure at joints. Inelastic deformation demands in step (b) are estimated from an elastic analysis using secant‐to‐yield member stiffnesses. Empirical expressions for the deformation capacity of RC elements are used for the final proportioning of elements to meet the inelastic deformation demands. The procedure is applied to one side of a 4‐storey test structure that includes a coupled wall and a two‐bay frame. The other side is designed and detailed according to Eurocode 8. Major differences result in the reinforcement of the two sides, with significant savings on the DBD‐side. Pre‐test calculations show no major difference in the seismic performance of the two sides of the test structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Over the past 20 years, significant socio-economic losses have been encountered in Turkey due to several moderate to large earthquakes. The studies published after the earthquakes concurringly emphasized that multistory reinforced concrete (RC) buildings, mostly 3–7 story ones, collapsed or were heavily damaged as a result of inadequate seismic performance. Global drift ratio demands are mostly used as a representative quantity for determining the behavior of structures when subjected to earthquakes. In this study, three representative mid-rise RC buildings are analyzed by nonlinear time history analysis using code-compatible real ground motion record sets and the calculated global drift ratio demands of these buildings are statistically evaluated. Ground motion record sets compatible with the design spectrum defined for local soil classes in the Turkish Earthquake Code (TEC-2007) are used for the analyses. In order to evaluate the effect of the number of ground motions on drift ratio demands, five different ground motion record sets with 7, 11 and 15 ground motion records are used separately for each local soil class. Results of this study indicate that (1) the dispersion of global drift ratio demands calculated for individual ground motion records in record sets is high, (2) local soil class has no significant effect on dispersion. However, dispersion increases in a direct proportion to the number of ground motion records in a record set, (3) the mean of global drift ratio demands calculated for different ground motion record sets may differ although they are compatible with the same design spectrum, (4) the mean of the drift demands obtained from different ground motion record sets compatible with a particular design spectrum can be accepted as simply random samples of the same population at 95% confidence level.  相似文献   

13.
While much effort has been spent on analysis of individual structures, building class seismic damage estimators, of value in disaster planning, code-writing, city planning, national hazards policy formulation, etc., have been little investigated. Based largely on data from Sendai City, Japan in the 12 June, 1978 Miyagiken-oki earthquake (ML = 7.4), estimators of seismic damage for low- and mid-rise buildings in urban Japan have been determined. For low-rise buildings, based on damage to over 60,000 buildings, damage ratios for onset of damage and collapse and for cost of damage are found to correlate best with response spectra at 0.75 s. Using published test data and average building properties, a seismic damage model explains the low-rise building behaviour and permits examination of the effect of structural changes on the estimated damage. For mid-rise buildings, damage states (0: none, 4: total) are determined as a function of maximum storey displacement, based on published natural period determinations (pre- and post-earthquake) for 189 mid-rise buildings in Sendai. The effects of structural changes on expected damage can also be estimated. With these two building class damage estimators, a large part of future seismic damage to urban Japan can be estimated, as well as the effects of various mitigation measures.  相似文献   

14.
Large number of vulnerable reinforced concrete (RC) buildings exists in earthquake prone areas. These low cost residential and/or commercial buildings, which are three to seven-stories high, usually do not receive essential engineering services during the construction phase. Finding cheap, easily applicable and occupant friendly retrofitting techniques are extremely important to reduce the seismic risk of these buildings. As an attempt to this, a particular type of high strength clay brick is studied to evaluate its potential for the structural retrofitting. A set of experiment was conducted to assess the important mechanical characteristics of the infill walls made from these bricks. Also the performance of two RC frames retrofitted with these walls, having different connection details between the wall and RC members was examined experimentally. The analytical nonlinear static analyses of these specimens have been performed using SeismoStruct to achieve some model parameters for representing the “infill wall model” in the program. Adaptive pushover and nonlinear time history analyses were conducted to investigate the performance of a six storey representative RC frame retrofitted with these walls. Evaluation of the results obtained in these analyses prove that this retrofitting technique introduces important strength and stiffness increments to the structure, regarding its seismic demands, which are similar to the results obtained from the experiments.  相似文献   

15.
16.
A parametric study of 13 608 ductile moment‐resisting steel frames designed according to Eurocodes 3 and 8 is performed. A flowchart for the evaluation of the seismic‐resistant capacity of the designed frames is developed based on the N2 method. The design structural overstrength, ductility supply, plastic redistribution parameter, supply reduction factor and performance ratio of the frames are analysed. We determine that the frames have performance ratios higher than 1, mostly due to high values of design structural overstrength, showing that the seismic supply produced by the restraints of Eurocodes 3 and 8 is always higher than the seismic demand. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元   总被引:9,自引:2,他引:9  
在已证明三坚直线单元(Three-vertical-line element)和多竖直线单元(Multipli-vertical-line element)本质上为铁木辛哥分层梁单元(这里称之为扩展铁木辛哥分层梁单元)的基础上,本文进一步讨论这一单元模型。首先推导了单元刚度矩阵和内力表达式;然后讨论单元分别模拟轴向-弯曲和剪切滞变特性的理论根据;其次,根据试验结果,改进了Kabeyasawa提出的层位-压滞变模型;最后给出计算实例。  相似文献   

18.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   

19.
浅谈欧洲规范Eurocode 8-结构抗震设计   总被引:2,自引:0,他引:2  
简单介绍了欧洲规范(Eurocodes)的基本情况,概括给出了欧洲规范8-结构抗震设计的基本内容和特点,进而在抗震设计基本要求、建筑抗震概念设计基本原则两个方面与我国建筑抗震设计规范(GB50011-2001)进行了比较和评述,然后在场地类别、地震作用和结构抗震验算等几个方面对两规范进行了简单的对比和评述。  相似文献   

20.
A two‐phase research program has been undertaken to investigate fundamental natural periods of concentrically braced frames (CBFs) designed according to Eurocode 8 (EC8). In the first phase of the program, over 83,700 buildings were designed, and the accuracy of the lower bound expressions given in well‐known design specifications was evaluated. The results indicated that the lower bound expressions given in EC8 and National Building Code of Canada (NBCC) are acceptable. Although all structures had periods longer than the ones estimated by the EC8 expression, a few structures had shorter periods than the ones estimated by the NBCC expression. In general, the lower bound expressions given in EC8 and NBCC were found to provide over conservative estimates for most cases. In the second phase of the program, a simple hand method was developed to estimate the fundamental natural periods of CBFs designed to EC8. This method requires the use of inelastic top story drift ratio as a parameter to quantify stiffness characteristics. The drift ratios were extracted from the design pool developed as a part of the first phase and represented by simple mathematical relationships. Evaluation of the proposed method indicated that the method is accurate in providing estimates of the fundamental period. To safeguard against providing unconservative estimates, the method was modified to arrive at a new lower bound expression, which significantly improves the estimates compared with the ones provided by the existing expressions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号