首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular R-matrix calculations are performed at a range of energies to give rotational and vibrational excitation and de-excitation cross-sections and, hence, rates for electron collisions with HeH+ up to electron temperatures of 20 000 K. Critical electron densities are also given. The rotational calculations include the Coulomb–Born completion of the cross-sections for high l values. Rates for the transition j  = 0 → 2, which have previously been assumed to be negligible, are found to be up to half those for j  = 0 → 1, raising the prospect of observing the HeH+ j  = 2 → 1 emission line at 74.8 μm.  相似文献   

2.
3.
4.
5.
The rates of rotational transitions for HCO+, the most abundant ion in interstellar space, induced by collision with helium are obtained for temperatures ranging from 10 to 80 K. The calculations are based on a new potential energy surface for the He–HCO+ interaction and on a scattering matrix whose accuracy was checked by pressure broadening and shift measurements. The rates     decrease for increasing values of j and  Δ j   , with a temperature trend depending on the energy involved in the transitions: if it is small, the rates are almost constant, while an increase with T is found for other cases. Comparison with previous and less accurate results shows an agreement within 50 per cent. Comparison between state-to-state and pressure broadening cross-sections allows us to discuss importance and influence of elastic and inelastic collisions.  相似文献   

6.
7.
The wavelength and Einstein A coefficient are calculated for all rotation–vibration transitions of  4He1H+, 3He1H+, 4He2H+  and  3 He2H+  , giving a complete line list and the partition function for  4HeH+  and its isotopologues. This opacity is included in the calculation of the total opacity of low-metallicity stars and its effect is analysed for different conditions of temperature, density and hydrogen number fraction. For a low helium number fraction (as in the Sun), it is found that HeH+ has a visible but small effect for very low densities  (ρ≤ 10−10 g cm−3)  , at temperatures around 3500 K. However, for high helium number fraction, the effect of HeH+ becomes important for higher densities  (ρ≤ 10−6 g cm−3)  , its effect being most important for a temperature around 3500 K. Synthetic spectra for a variety of different conditions are presented.  相似文献   

8.
We have computed optical absorption-line profiles of CH+ and CH, as predicted by a model of a C-type shock propagating in a diffuse interstellar cloud. Both these species are produced in the shock wave in the reaction sequence that is initiated by C+(H2, H)CH+. Whilst CH+ flows at the ion speed, CH, which forms in the dissociative recombination reaction CH+3(e, H2)CH, flows at a speed which is intermediate between those of the ions and the neutrals. The predicted velocity shift between the CH+ and CH line profiles is found to be no more than approximately 2 km s−1, which is smaller than has previously been assumed. We also investigate OH and HCO+, finding that the correlation between their column densities, recently observed in the diffuse interstellar medium, can be reproduced by the model.  相似文献   

9.
We have calculated synthetic spectra of perpendicular and parallel rovibronic bands of cumulene carbene molecules of the form C n H2. The perpendicular bands are consistent with a regularly spaced group of diffuse interstellar bands (DIBs) near 6850 Å. Parallel bands calculated for these molecular structures are consistent with the intrinsic profile of the associated 6614-Å DIB. Both types of bands are expected for an electronic transition that these species should have at those energies. We could not determine if the molecule was charged or if an atom other than carbon terminated the chain-end. Constraints due to molecular geometry and temperature place the chain length at 7–15 carbons to fit the 6850-Å group and 9–13 carbons to fit the 6614-Å DIB.  相似文献   

10.
The high resolution laboratory spectrum of hot water vapour has been recorded in the 500–13 000 cm−1 wavenumber range and we report on the analysis of the 4750–13 000 cm−1 (0.769–2.1 μm) portion. The emission spectrum was recorded using an oxy-acetylene welding torch and a Fourier transform spectrometer. Line assignments in the laboratory spectrum as well as in an absorption spectrum of a sunspot umbra were made with the help of the BT2 line-list. Our torch spectrum is the first laboratory observation of the 9300 Å'steam bands' seen in M-stars and brown dwarfs.  相似文献   

11.
We present a set of gas-phase Planck mean and Rosseland mean opacity tables applicable for simulations of star and planet formation, stellar evolution and disc modelling at various metallicities in hydrogen-rich environments. The tables are calculated for gas temperatures between 1000 and 10 000 K and total hydrogen number densities between 102 and  1017 cm−3  . The carbon-to-oxygen ratio is varied from 0.43 to well above 2.0, the nitrogen-to-oxygen ratio between 0.14 and 100.0. The tables are calculated for a range of metallicities down to  [M/H]'= log  N M/ N H=−7.0  . We demonstrate how the mean opacities and the abundances of the opacity species vary with C/O, N/O and  [M/H]'  . We use the element abundances from Grevesse et al., and we provide additional tables for the oxygen abundance value from Caffau et al. All tables will be available online at http://star-www.st-and.ac.uk/~ch80/datasources.html .  相似文献   

12.
13.
14.
Ammonia inversion lines are often used as probes of the physical conditions in the dense interstellar medium. The excitation temperature between the first two para-metastable (rotational) levels is an excellent probe of the gas kinetic temperature. However, the calibration of this ammonia thermometer depends on the accuracy of the collisional rates with H2. Here, we present new collisional rates for ortho- and para-NH3 colliding with  para-H2( J = 0)  , and investigate the effects of these new rates on the excitation of ammonia. Scattering calculations employ a new, high-accuracy, potential energy surface computed at the coupled-cluster CCSD(T) level with a basis set extrapolation procedure. Rates are obtained for all transitions involving ammonia levels with   J ≤ 3  and for kinetic temperatures in the range 5–100 K. We find that the calibration curve of the ammonia thermometer – which relates the observed excitation temperature between the first two para-metastable levels to the gas kinetic temperature – does not change significantly when these new rates are used. Thus, the calibration of ammonia thermometer appears to be robust. Effects of the new rates on the excitation temperature of inversion and rotation–inversion transitions are also found to be small.  相似文献   

15.
16.
17.
Molecular R -matrix calculations are performed to give rotational excitation rates for electron collisions with linear molecular ions. Results are presented for CO+, HCO+, NO+ and H2+ up to electron temperatures of 10 000 K. De-excitation rates and critical electron densities are also given. It is shown that the widely used Coulomb–Born approximation is valid for Δ j =1 transitions when the molecular ion has a dipole greater than about 2D, but otherwise is not reliable for studying electron-impact rotational excitation. In particular, transitions with Δ j >1 are found to have appreciable rates and are found to be entirely dominated by short-range effects.  相似文献   

18.
The neighbouring lines a 6D5/2– x 6Po3/2 (1272.617 Å) and a 6D5/2– w 2Po3/2 (1272.657 Å) have been observed in the UV spectrum of χ Lupi to be of comparable intensity. The latter, Δ S  = 2, transition would be expected to be very weak. The two upper states should display negligible mixing. We give a detailed, quantitative discussion of how the two upper states are in fact strongly mixed through their mixing with 3d6(3D)4p 4Po3/2, and hence we explain the relative strengths of the two UV lines.  相似文献   

19.
We present rate coefficients for rotational transitions induced in collisions between H2 molecules. Rotational levels J  ≤ 8 and kinetic temperatures T  ≤ 1000 K are considered. The interaction potential computed by Schwenke has been used, together with the quantal coupled channels method of calculating the cross-sections. Comparison is made with the more recent of previous results.  相似文献   

20.
Two Bok globules, L1253 (CB246) and CB34, have been mapped in the C2S (21–10) transition and in the NH3 (1, 1) and NH3 (2, 2) inversion transitions, respectively. By comparing the C2S map of L1253 (CB246) with the NH3 map of the same globule from Lemme et al., a clumped onion structure results as a consequence of the chemical and dynamical evolution of the object. From the derived parameters it appears that both L1253 (CB246) and CB34 are close to virial equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号