首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

2.
Using the All-Sky Monitor (ASM, 1.5–12–kev) data of Rossi X-ray Timing Explorer (RXTE) from January 1996 to May 2005, we have made a detailed analysis of the correlation between photon-count rate and spectral hardness ratio HR2 (5–12 keV/3–5 keV) of the black-hole candidate X-ray binary Cyg X-1 in 3 energy bands, namely the A-band (1.5–3 keV), B-band (3–5 keV) and Cband (5–12 keV). By the study on the ASM data of 1-day time scale, we find: (1) When Cyg X-1 is in the soft state, the A-band photon-count rate and hardness ratio HR2 exhibit an anticorrelation, but in B-band and C-band there appears the positive correlation. When Cyg X-1 is in hard state, the photon-count rates in the A,B,C bands are all inversely correlated with the hardness ratio HR2; (2) No matter whether Cyg X-1 is in the soft state or the hard state, the hardness ratios HR2 and HR1 are always positively correlated. In addition, we have analyzed the “dwell by dwell” data of the ASM, and obtained the following interesting results: (1) In the period of MJD = 52600–52760 (while Cyg X-1 is in the hard state), the photon-count rates in the A-band and B-band are inversely correlated with HR2, but in the C-band there appears a relatively strong positive correlation; (2) During the hard state, a clear anticorrelation exists between the hardness ratios HR2 and HR1.  相似文献   

3.
We estimate energy spectra and fluxes at the Earth’s surface of the cosmic and Galactic neutrino backgrounds produced by thermonuclear reactions in stars. The extra-galactic component is obtained by combining the most recent estimates of the cosmic star formation history and the stellar initial mass function with accurate theoretical predictions of the neutrino yields all over the thermonuclear lifetime of stars of different masses. Models of the structure and evolution of the Milky Way are used to derive maps of the expected flux generated by Galactic sources as a function of sky direction. The predicted neutrino backgrounds depend only slightly on model parameters. In the relevant 50 keV–10 MeV window, the total flux of cosmic neutrinos ranges between 20 and 65 cm−2 s−1. Neutrinos reaching the Earth today have been typically emitted at redshift z2. Their energy spectrum peaks at E0.1–0.3 MeV. The energy and entropy densities of the cosmic background are negligible with respect to the thermal contribution of relic neutrinos originated in the early universe. In every sky direction, the cosmic background is outnumbered by the Galactic one, whose integrated flux amounts to 300–1000 cm−2 s−1. The emission from stars in the Galactic disk contributes more than 95% of the signal.  相似文献   

4.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

5.
The hydrogen column density along the line of sight to Cyg X-1 is 7×1021 cm–2 as determined from the extinction of its optical counterpart HD 226 868. This value may be used to interpret soft X-ray measurements, including those previously reported, where it is not possible to determine the column density independently from the intrinsic spectral function. The correction for interstellar absorption is larger than previously thought. Application to an old observation suggests that an intense soft X-ray component was present in Cyg X-1, even though the data at 1 keV suggests that it was probably in a low state. This is consistent with the picture of Cyg X-1 suggested by Price and Thorne, in which transitions in Cyg X-1 are attributed to changes in the high energy cut-off of an intense soft component.Paper presented at the COSPAR Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

6.
The power spectral density of cosmic ray fluctuations observed at ground level during the years 1966–1968 has been calculated. In order to obtain the correct shape of the spectrum, the Fast Fourier Transform method with a triangular data window was used and corrections were made for uncorrelated errors and aliasing effects. When ignoring the Earth rotation peaks, the spectral index , for a sample of polar, middle latitude and equatorial stations, is − 1.96 in the frequency range 3 × 10−7–10−4 Hz. A possible break around 10−5 Hz, if existing, would be, on the whole, barely significant as a would change from − 1.96 to − 2.10. There are indications that beyond 10−4 Hz up to 7 × 10−3 Hz the spectrum continues with − 2.  相似文献   

7.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

8.
Experimental results on the intensity, energy spectrum and time variations in hard X-ray emission from Cyg X-1 based on a balloon observation made on 1971, April 6 from Hyderabad (India) are described. The average energy spectrum of Cyg X-1 in the 22–154 keV interval on 1971 April 6 is best represented by a power law dN/dE=(5.41±1.53)E –(1.92±0.10) photons cm–2s–1 keV–1 which is in very good agreement with the spectrum of Cyg X-1 derived from an earlier observation made by us on 1969 April 16 in the 25–151 keV band and given by dN/dE=(3.54±2.44)E –(1.89±0.22) photons cm–2s–1 keV–1. A thermal bremsstrahlung spectrum fails to give a good fit over the entire energy range for both the observations. Comparison with the observations of other investigators shows that almost all balloon experiments consistently give a spectrum of E –2, while below 20 keV the spectrum varies fromE –1.7 toE –5. There is some indication of a break in the Cyg X-1 spectrum around 20 keV. Spectral analysis of data in different time intervals for the 1971 April 6 flight demonstrates that while the source intensity varies over time scales of a few minutes, there is no appreciable variation in the spectral slope. Analysis of various hard X-ray observations for long term variations shows that over a period of about a week the intensity of Cyg X-1 varies upto a factor of four. The binary model proposed by Dolan is examined and the difficulties in explaining the observed features of Cyg X-1 by this model are pointed out.  相似文献   

9.
We discuss the capability of ‘100 GeV’ class imaging atmospheric Cherenkov telescope (IACT) arrays as future powerful instruments of ground-based gamma-ray astronomy. It is assumed that the array is gathered from individually triggered quadrangular 4-IACT ‘cells’ with a linear size of about 100 m. The multi-cell concept allows coverage of large detection areas economically, and at the same time the effective exploitation of the stereoscopic approach of determination of the shower parameters using information obtained by several IACTs simultaneously. Determination of arrival directions of γ-ray primaries on an event-by-event basis with accuracy δθ ≤ 0.1° combined with high suppression efficiency (at both the hardware and software levels) of the background hadronic showers by a factor of ≈ 103, and large, up to 1 km2 collection areas, can provide minimum detectable energy fluxes of ≥ 100 GeV γ-rays from point sources down to 10−13 erg/cm2 s which is about 3 orders of magnitude lower than the current sensitivities achieved by the satellite-borne detectors at MeV and GeV energies. High sensitivities of multi-IACT arrays would partially compensate the limited efficiency of the technique for all-sky surveys, as well as allow study of moderately extended (≤ 1°) γ-ray sources. IACT arrays with minimum detectable fluence of ≥ 100 GeV γ-rays Sγ < 10−8 erg/cm2 are well suited for effective exploration of highly sporadic nonthermal phenomena from different classes of astrophysical objects on time-scales from ≤ 1 s to several minutes.  相似文献   

10.
Power spectrum estimates are computed for cosmic ray and pressure variations in the frequency range of 1.6 × 10−6 to 4.15 × 10−3 c/sec for three data sets each of 27 days length (2 min interval) recorded at Chacaltaya (Bolivia) during 1965–1966. The general trend of these spectra showy ƒ fit having exponent values from −1.5 to −1.9 for L.F. side. From the semi-diurnal peaks both in cosmic rays and pressure, the average value of pressure coefficient is found to be 0.3 per cent/mm of Hg. For the same three sets of data, a detailed analysis of cross-spectrum, coherence and phase relationship between cosmic rays and pressure is carried out in the frequency range of 1–12 c/day. Besides semi-diurnal peak, variations of 3, 4, 7 and 8 c/day are found to be common both in cosmic rays and pressure. The value of pressure coefficient and residual amplitude of cosmic rays for these particular frequencies are calculated.  相似文献   

11.
A balloon-borne gemanium spectrometer was flown in an attempt to detect line-emission from Cyg X-1 and the Crab nebula in the energy range 30–270 keV. The experiment was carried out on 29–30 September, 1982. A line feature at 145 keV was observed from Cyg X-1. The intensity is (1.34±0.31)×10–2 photons cm–2 s–1 and the width is 14.3 keV FWHM. From the Crab nebula, a weak line feature with 1.8 excess was found around 78 keV.  相似文献   

12.
Continuous observations of the amplitude and spectrum of naturally occurring radiation in the band 2–40 kc/s have been made during the period June to December 1958 near Sydney, Australia. A large number of isolated noise bursts lasting for some hours were detected. The intensity ranged from 6 × l0−19 to 6×10-17W m−2 (c/s)−1 at 4·6 kc/s. Three main types of bursts were identified and classified on a basis of their spectra which usually extended from 3 to 5 kc/s, 4 to 8 kc/s and 2 to 30 kc/s, respectively. Major bursts, which were always of the latter two types, were clearly associated with strong auroral and magnetic activity and some showed a reproducible sequence of amplitude variation lasting about 36 hours. On three occasions, a detailed correspondence between the intensity of the noise and of simultaneously occurring red oxygen airglow was observed. Theories of the origin of the noise are discussed.  相似文献   

13.
Venera 9, 10 measurements of the nightside ionospheric profile and the night airglow were used for investigating ionosphere formation processes. The upper ionospheric layer may be formed by HeI 584 Å radiation; the lower layer by meteorite ionization. Upper limits on the electron energy flux, <4 × 108eV cm−2 s−1, the helium ion flux <107 cm−2 s−1, the nitric oxide mixing ratio, <1.5 × 10−4 and the atomic sulphur mixing ratio, <10−6, are deduced for ionospheric altitudes.  相似文献   

14.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

15.
Using 1658 normal points of the McDonald lunar ranging data in the period 1971.6–1979.0, I calculated the Earth's rotation curve, and found an offset of −330 × 10−10 for UT1 – UTC. The difference between the UT1 values given by the lunar data and BIH is 3.6 ms. This difference and the standard error of single determinations increase with increasing interval length used in the data reduction. This is shown to be due to the neglect of the secular term in UT1-UTC. It appears that an interval length of 2 days is suitable when calculating the Earth's rotation.  相似文献   

16.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

17.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

18.
This paper presents observations of OH maser lines of W 33A for the transitions 2Π3/2, J = 3/2, F = 1 → 1 and F = 2 → 2. Two models, a thin tube and a sphere, were used for modelling the masing region and a molecular hydrogen density of about 107 cm−3 was obtained. To give a maser photon emission of the order of 1046 s−1, both models require a pump rate of 1 OH cm−3s−1, while the sphere model requires a higher pump efficiency.  相似文献   

19.
We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119–147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 μm. For CH3D, the prominent Q branch of the ν2 fundamental band of CH3D near 4.55 μm is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32±15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is 2.9±1.5×1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (0.5–1.0 Gyr), we find a mean CO atmospheric production rate of 6±3×105 kg yr−1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779–784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8±0.9×10−4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3×10−13 gm cm−2 s−1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer–Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is 0.02 km3 yr−1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan.  相似文献   

20.
Simulation calculations have been made to examine the modification effect of a hot X-ray photon field on a-ray spectrum by the photon-photon pair production and inverse Compton scattering processes. The Cyg X-3 system was used as a paradigm. It is shown that a-ray spectrum can change significantly when passing through the ambient keV X-ray photon field of an accretion binary source. For Cyg X-3, a significant amount of r-rays originated near the central source in the range of 102-104 MeV could be absorbed by the extended X-ray photons from accretion disk corona in a high X-ray luminosity state and, on the other hand, the inverse Compton effect of secondary electrons could cause a considerable increase in intensity of-rays between ~ 10 MeV and ~ 50 MeV. The relevance of the absorption effect for observations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号