首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.  相似文献   

2.
Operations at Central-Spanish airports are often, especially in winter, affected by visibility reduction. The Instituto Nacional de Meteorología (INM), the Spanish Weather Service, has developed a single-column model (SCM) in order to improve short-term forecasts of fog, visibility and low-clouds. The SCM, called H1D, is a one-dimensional version of the HIRLAM limited-area model. It is operationally run for three airports in the region: Madrid-Barajas, Almagro and Albacete-Los Llanos. Since SCMs cannot deal with horizontal heterogeneity, the terms that depend on the horizontal structure of the atmosphere are estimated from the outputs of the three-dimensional (3-D) model and introduced into the SCM as external forcings. The systematic analysis of the meteorological situations has evidenced the existence of a close relationship between fog formation and the presence of drainage winds in the region. Since the 3-D model docs not have the necessary resolution to correctly simulate the main features of the drainage flow caused by the complex topography in the proximity of Madrid-Barajas, it cannot provide the SCM with the correct forcings. This problem has been partially overcome through the introduction of a module that, under certain conditions, substitutes the values computed from the 3-D model outputs by others that are based on a conceptual model of the phenomenon and have been empirically derived from climatological knowledge. This module improves the H1D verification scores for the basic meteorological variables—wind, temperature and humidity—and reduces the false alarm rate in fog forecast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号