首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dissolution Kinetics of Dolomite in Water at Elevated Temperatures   总被引:1,自引:0,他引:1  
Kinetic experiments of dolomite dissolution in water over a temperature range from 25 to 250°C were performed using a flow through packed bed reactor. Authors chose three different size fractions of dolomite samples: 18–35 mesh, 35–60 mesh, and 60–80 mesh. The dissolution rates of the three particle size samples of dolomite were measured. The dissolution rate values are changed with the variation of grain size of the sample. For the sample through 20–40 mesh, both the release rate of Ca and the release rate of Mg increase with increasing temperature until 200°C, then decrease with continued increasing temperature. Its maximum dissolution rate occurs at 200°C. The maximum dissolution rates for the sample through 40–60 mesh and 60–80 mesh happen at 100°C. Experimental results indicate that the dissolution of dolomite is incongruent in most cases. Dissolution of fresh dolomite was non-stoichiometric, the Ca/Mg ratio released to solution was greater than in the bulk solid, and the ratio increases with rising temperatures from 25 to 250°C. Observations on dolomite dissolution in water are presented as three parallel reactions, and each reaction occurs in consecutive steps as
where the second part is a slow reaction, and also the reaction could occur as follows:
The following rate equation was used to describe dolomite dissolution kinetics
where refers to one of each reaction among the above reactions; k ij is the rate constant for ith species in the jth reaction, a i stands for activity of ith aqueous species, n is the stoichimetric coefficience of ith species in the jth reaction, and define . The experiments prove that dissolved Ca is a strong inhibitor for dolomite dissolution (release of Ca) in most cases. Dissolved Mg was found to be an inhibitor for dolomite dissolution at low temperatures. But dissolution rates of dolomite increase with increasing the concentration of dissolved Mg in the temperature range of 200–250°C for 20–40 mesh sample, and in the temperature range of 100–250°C for 40–80 mesh sample, whereas the Mg2+ ion adsorption on dolomite surface becomes progressively the step controlling reaction. The following rate equation is suitable to dolomite dissolutions at high temperatures from 200 to 250°C.
where refers to dissolution rate (release of Ca), and are molar concentrations of dissolved Ca and Mg, k ad stands for adsorption reaction rate constant, K Mg refers to adsorption equilibrium constant. At 200°C for 40–60 mesh sample, the release rate of Ca can be described as:
  相似文献   

2.
The deformation behavior of calcite has been of longstanding interest. Through experiments on single crystals, deformation mechanisms were established such as mechanical twinning on in the positive sense and slip on and both in the negative sense. More recently it was observed that at higher temperatures slip in both senses becomes active and, based on slip line analysis, it was suggested that slip may occur. So far there had been no direct evidence for basal slip, which is the dominant system in dolomite. With new torsion experiments on calcite single crystals at 900 K and transmission electron microscopy, this study identifies slip unambiguously by direct imaging of dislocations and diffraction contrast analysis. Including this slip system in polycrystal plasticity simulations, enigmatic texture patterns observed in compression and torsion of calcite rocks at high temperature can now be explained, resolving a long-standing puzzle.  相似文献   

3.
Interaction of freshly precipitated silica gel with aqueous solutions was studied at laboratory batch experiments under ambient and near neutral pH-conditions. The overall process showed excellent reversibility: gel growth could be considered as an opposite process to dissolution and a linear rate law could be applied to experimental data. Depending on the used rate law form, the resulting rate constants were sensitive to errors in parameters/variables such as gel surface area, equilibrium constants, Si-fluxes, and reaction quotients. The application of an Integrated Exponential Model appeared to be the best approach for dissolution data evaluation. It yielded the rate constants k dissol ∼ (4.50 ± 0.68) × 10−12 and k growth ∼ (2.58 ± 0.39) × 10−9 mol m−2 s−1 for zero ionic strength. In contrast, a Differential Model gave best results for growth data modeling. It yielded the rate constants k dissol ∼ (1.14 ± 0.44) × 10−11 and k growth ∼ (6.08 ± 2.37) × 10−9 mol m−2 s−1 for higher ionic strength (I ∼ 0.04 to 0.11 mol L−1). The found silica gel solubility at zero ionic strength was somewhat lower than the generally accepted value. Based on the and standard Gibbs free energy of silica gel formation was calculated as and −850,318 ± 20 J mol−1, respectively. Activation energies for silica gel dissolution and growth were determined as and respectively. An universal value for growth of any silica polymorph, is not consistent with the value for silica gel growth, which questions the hypothesis about one unique activated complex controlling the silica polymorph growth.  相似文献   

4.
The thermodynamic stability constants for the hydrolysis and formation of mercury (Hg2+) chloride complexes
have been used to calculate the activity coefficients for Hg(OH) n (2–n)+ and HgCl n (2–n)+ complexes using the Pitzer specific interaction model. These values have been used to determine the Pitzer parameters for the hydroxide and chloro complexes and C ML). The values of and have been determined for the neutral complexes (Hg(OH)2 and HgCl2). The resultant parameters yield calculated values for the measured values of log to  ±0.01 from I  =  0.1 to 3 m at 25°C. Since the activity coefficients of and are in reasonable agreement with the values for Pb(II), we have estimated the effect of temperature on the chloride constants for Hg(II) from 0 to 300°C and I = 0–6 m using the Pitzer parameters for complexes. The resulting parameters can be used to examine the speciation of Hg(II) with Cl in natural waters over a wide range of conditions.  相似文献   

5.
Schists from two mylonitic localities in the footwall of a low-angle normal fault in the eastern Alps record different degrees of embrittlement during exhumation, depending on the extent to which fluid–rock reactions proceeded. At one site, graphitic schists preserve textural evidence for two metamorphic reactions that modified and/or fluid volume: (1) reaction between graphite and aqueous fluid that increased without changing the molar amount of fluid, and (2) replacement of titanite by rutile, calcite, and quartz. The latter reaction involved net consumption of increasingly CO2-rich fluid. Areas where the first reaction proceeded are associated with abundant Mode I microcracks. Fluid inclusion arrays within the microcracks show that increased from ∼0.1 to 0.6 during decompression from 4.75 to 2 kbar at a reference temperature of 500°C. Titanite consumption is most pronounced within transgranular Mode I microcracks, but microcracks do not crosscut products of this reaction; fluid consumption during reaction was coeval with the end of microcracking, at least on a local scale. At the other site, graphitic schists lack small-scale Mode I cracks as well as evidence for graphite consumption during decompression. SEM imaging shows that graphite is anhedral and pitted at the first site, but occurs in clusters of euhedral grains at the second site. Mass balance calculations demonstrate that rocks with partially consumed graphite were infiltrated by an externally derived, H2O-rich fluid that drove subsequent graphite-fluid reaction. Evidence for similar fluid infiltration is absent at the second site. Variations in the degree of reaction progress indicate that fluid pathways and deformation style were heterogeneous on the scale of millimeters to kilometers during exhumation from mid-crustal depths.  相似文献   

6.
The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported: $$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$ and $$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$ The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\) . Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.  相似文献   

7.
We designed and carried out experiments to investigate the effect of H2O on the liquidus temperature of olivine-saturated primitive melts. The effect of H2O was isolated from other influences by experimentally determining the liquidus temperatures of the same melt composition with various amounts of H2O added. Experimental data indicate that the effect of H2O does not depend on pressure or melt composition in the basaltic compositional range. The influence of H2O on melting point lowering can be described as a polynomial function This expression can be used to account for the effect of H2O on olivine-melt thermometers, and can be incorporated into fractionation models for primitive basalts. The non-linear effect of H2O indicates that incorporation of H2O in silicate melts is non-ideal, and involves interaction between H2O and other melt components. The simple speciation approach that seems to account for the influence of H2O in simple systems (albite-H2O, diopside-H2O) fails to describe the mixing behavior of H2O in multi-component silicate melts. However, a non-ideal solution model that treats the effect of H2O addition as a positive excess free energy can be fitted to describe the effect of melting point lowering.  相似文献   

8.
The solubility of calcite in H2O was measured at 6–16 kbar, 500–800 °C, using a piston-cylinder apparatus. The solubility was determined by the weight loss of a single crystal and by direct analysis of the quench fluid. Calcite dissolves congruently in the pressure (P) and temperature (T) range of this study. At 10 kbar, calcite solubility increases with increasing temperature from 0.016±0.005 molal at 500 °C to 0.057±0.022 molal at 750 °C. The experiments reveal evidence for hydrous melting of calcite between 750 and 800 °C. Solubilities show only a slight increase with increasing P over the range investigated. Comparison with work at low P demonstrates that the P dependence of calcite solubility is large between 1 and 6 kbar, increasing at 500 °C from 1.8×10–5 molal at 1 kbar to 6.4×10–3 molal at 6 kbar. The experimental results are described by:
where T is in Kelvin and H2O is the density of pure water in g/cm3. The equation is applicable at 1–20 kbar and 400–800 °C, where calcite and H2O stably coexist. Extrapolated thermodynamic data for indicates that the dominant dissolved carbon species is CO2,aq at all experimental conditions. The results require that equilibrium constant for the reaction:
increases by several orders of magnitude between 1 and 6 kbar, and also rises with isobaric T increase. Published thermodynamic data for aqueous species fail to predict this behavior. The increase in calcite solubility with P and T demonstrates that there is a strong potential for calcite precipitation during cooling and decompression of water-rich metamorphic fluids sourced in the middle to lower crust.Editorial responsibility: T.L. Grove  相似文献   

9.
Opening and resetting temperatures in heating geochronological systems   总被引:2,自引:0,他引:2  
We present a theoretical model for diffusive daughter isotope loss in radiochronological systems with increasing temperature. It complements previous thermochronological models, which focused on cooling, and allows for testing opening and resetting of radiochronometers during heating. The opening and resetting temperatures are, respectively,
where R is the gas constant, E and D 0 are the activation energy and the pre-exponential factor of the Arrhenius law for diffusion of the daughter isotope, a the half-size of the system (radius for sphere and cylinder and half-thickness for plane sheet) and τ the heating time constant, related to the heating rate by
For opening and resetting thresholds corresponding to 1 and 99% loss of daughter isotope, respectively, the retention parameters for sphere, cylinder and plane sheet geometries are A op = 1.14 × 105, 5.07 × 104 and 1.27 × 104 and A rs = 2.40, 1.37 and 0.561. According to this model, the opening and resetting temperatures are significantly different for most radiochronometers and are, respectively, lower and higher than the closure temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Commonly used thermometer and barometer calibrations are sensitive to mineral assemblage and, thus, bulk-rock composition. Calculated mineral stabilities for an average pelitic rock over a pressure–temperature (PT) range appropriate for normal, thickened, heated and shallowly subducted continental crust (400–900°C at 0.1–3.0 GPa) reveal more than one hundred possible assemblages. Individual phase compositions are dependent on the assemblage in which they belong and combining isopleth sets to represent and reveals several PT-ranges where commonly used mineral thermobarometers are less effective. For example, the garnet-biotite thermometer becomes increasingly P dependent in the absence of muscovite in high T melt-bearing assemblages, and biotite and plagioclase are not stable at pressures appropriate for lower thickened continental crust. Compositional thermobarometers involving equilibration between alternative phases (namely garnet, phengite and omphacite) are presented. Although the equilibrium compositions of phases at any P and T may change significantly as a function of bulk-rock composition, compositional-ratio thermobarometers are typically insensitive to this, unless a pseudo-univariant reaction is crossed and the buffering assemblage is altered. Quantification of the limits of efficacy of various thermobarometers allows the mineralogy of metapelites to be used to precisely determine segments of PT paths and infer their likely tectonic controls. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Mark J. CaddickEmail:
  相似文献   

11.
The models recognize that ZrSiO4, ZrTiO4, and TiSiO4, but not ZrO2 or TiO2, are independently variable phase components in zircon. Accordingly, the equilibrium controlling the Zr content of rutile coexisting with zircon is ZrSiO4 = ZrO2 (in rutile) + SiO2. The equilibrium controlling the Ti content of zircon is either ZrSiO4 + TiO2 = ZrTiO4 + SiO2 or TiO2 + SiO2 = TiSiO4, depending whether Ti substitutes for Si or Zr. The Zr content of rutile thus depends on the activity of SiO2 as well as T, and the Ti content of zircon depends on and as well as T. New and published experimental data confirm the predicted increase in the Zr content of rutile with decreasing and unequivocally demonstrate that the Ti content of zircon increases with decreasing . The substitution of Ti in zircon therefore is primarily for Si. Assuming a constant effect of P, unit and that and are proportional to ppm Zr in rutile and ppm Ti in zircon, [log(ppm Zr-in-rutile) + log] = A1 + B1/T(K) and [log(ppm Ti-in-zircon) + log − log] = A2 + B2/T, where the A and B are constants. The constants were derived from published and new data from experiments with buffered by either quartz or zircon + zirconia, from experiments with defined by the Zr content of rutile, and from well-characterized natural samples. Results are A1 = 7.420 ± 0.105; B1 = −4,530 ± 111; A2 = 5.711 ± 0.072; B2 = −4,800 ± 86 with activity referenced to α-quartz and rutile at P and T of interest. The zircon thermometer may now be applied to rocks without quartz and/or rutile, and the rutile thermometer applied to rocks without quartz, provided that and are estimated. Maximum uncertainties introduced to zircon and rutile thermometry by unconstrained and can be quantitatively assessed and are ≈60 to 70°C at 750°C. A preliminary assessment of the dependence of the two thermometers on P predicts that an uncertainty of ±1 GPa introduces an additional uncertainty at 750°C of ≈50°C for the Ti-in-zircon thermometer and of ≈70 to 80°C for the Zr-in-rutile thermometer.  相似文献   

12.
The impact of land-use change on the quality of groundwater in the Xiaotjiang watershed, China was assessed for the period 1982–2004. Groundwater samples were collected from 30 monitoring points across the watershed, and were representative of the various changes, determined by remote sensing and geographical information systems. The results indicate that 610 km2 (60% of the total watershed area) were subject to land-use change during the period. The most important changes were the conversion of 135 km2 of forested land to cultivated land, and 211 km2 of unused land to cultivated land. The main impact was ascribed to diffuse pollution from fertilizers applied to newly cultivated land, and from building development. Overall the groundwater pH value was significantly increased, as were the concentrations of ions , , , , and Cl in groundwater whilst the concentrations of Ca2+ and declined. More precisely, in the regions where forested land and unused land were converted into cultivated land, the pH value and the concentrations of Mg2+, , , , , Cl increased whilst the concentrations of Ca2+ and declined. However in the region where cultivated land was converted into construction land, the pH value and the concentrations of Ca2+, Mg2+, , , , , , Cl increased.
Résumé  L’impact des changements de l’utilisation du territoire sur la qualité de l’eau souterraine dans le bassin versant de Xiaojiang, en Chine, a été évalué de 1982 à 2004. Des échantillons d’eau souterraine ont été récoltés à partir de 30 points d’observation éparpillés sur le bassin, représentant les divers changements déterminés par télédétection et système d’information géographique. Les résultats indiquent que 610 km2 (soit 60% de la surface du bassin) ont été sujets à des modifications de l’utilisation du territoire sur cette période. Les changements les plus importants furent la conversion de 135 km2 de forêt et 211 km2 de terres inutilisées en terres cultivées. Le principal impact est attribué à la pollution diffuse des engrais utilisés en agriculture et pour les batiments. De manière générale le pH de l’eau souterraine a augmenté significativement, ainsi que les concentrations des ions , , , , et Cl, tandis que les concentration en Ca2+ et ont diminué. Plus précisément dans les régions transformées en terres cultivées, la valeur du pH et les concentrations en Mg2+, , , , , Cl ont augmenté tandis que les concentrations en Ca2+ et ont diminué. Toutefois dans les régions cultivées converties en zones de construction, le pH et les concentrations en Ca2+, Mg2+, , , , , , Cl ont augmenté.

Resumen  El impacto del cambio en uso de la tierra en la calidad del agua en la cuenca Xiaojiang, China fue evaluado para el periodo 1982–2004. Muestras de agua subterránea fueron tomadas de 30 puntos de monitoreo a través de la cuenca, y fueron representativas de los múltiples cambios, determinados por sensores remotos y sistemas de información geográfica. Los resultados indican que 610 km2 (60% del área total de la cuenca) estaban sujetos a cambios de uso de la tierra durante el periodo estudiado. Los cambios más importantes fueron la conversión de 135 km2 de bosques a tierra cultivada, y 211 km2 de tierra sin uso (ociosa) a tierra cultivada. El impacto principal fue causado por contaminación difusa de fertilizantes aplicados a la tierra recientemente cultivada, y a desarrollo de construcciones. En general el pH en agua subterránea creció significantemente, al igual que las concentraciones de los iones , , , , y Cl en agua subterránea mientras que las concentraciones de Ca2+ y decrecieron. Mas precisamente, en las regiones donde bosque y tierra ociosa fueron convertidas en tierra cultivada, el valor de pH y las concentraciones de Mg2+, , , , , Cl crecieron mientras las concentraciones de Ca2+ y decrecieron. Sin embargo en la región donde tierra cultivada fue convertida en construcciones, el valor de pH y las concentraciones de Ca2+, Mg2+, , , , , , Cl crecieron.
  相似文献   

13.
Multivariate statistical analyses have been extensively applied to geochemical measurements to analyze and aid interpretation of the data. Estimation of the covariance matrix of multivariate observations is the first task in multivariate analysis. However, geochemical data for the rare elements, especially Ag, Au, and platinum-group elements, usually contain observations the below detection limits. In particular, Instrumental Neutron Activation Analysis (INAA) for the rare elements produces multilevel and possibly extremely high detection limits depending on the sample weight. Traditionally, in applying multivariate analysis to such incomplete data, the observations below detection limits are first substituted, for example, each observation below the detection limit is replaced by a certain percentage of that limit, and then the standard statistical computer packages or techniques are used to obtain the analysis of the data. If a number of samples with observations below detection limits is small, or the detection limits are relatively near zero, the results may be reasonable and most geological interpretations or conclusions are probably valid. In this paper, a new method is proposed to estimate the covariance matrix from a dataset containing observations below multilevel detection limits by using the marginal maximum likelihood estimation (MMLE) method. For each pair of variables, sayY andZ whose observations containing below detection limits, the proposed method consists of three steps: (i) for each variable separately obtaining the marginal MLE for the means and the variances, , , , and forY andZ: (ii) defining new variables by and and lettingA=C+D andB=CD, and obtaining MLE for variances, and forA andB; (iii) estimating the correlation coefficient YZ by and the covariance YZ by . The procedure is illustrated by using a precious metal geochemical data set from the Fox River Sill, Manitoba, Canada.  相似文献   

14.
The density ρ of Caspian Sea waters was measured as a function of temperature (273.15–343.15) K at conductivity salinities of 7.8 and 11.3 using the Anton-Paar Densitometer. Measurements were also made on one of the samples (S = 11.38) diluted with water as a function of temperature (T = 273.15–338.15 K) and salinity (2.5–11.3). These latter results have been used to develop an equation of state for the Caspian Sea (σ = ±0.007 kg m−3)
where ρ0 is the density of water and the parameters A, B and C are given by
Measurements of the density of artificial Caspian Sea water at 298.15 K agree to ± 0.012 kg m−3 with the real samples. These results indicate that the composition of Caspian Sea waters must be close to earlier measurements of the major components. Model calculations based on this composition yield densities that agree with the measured values to ± 0.012 kg m−3. The new density measurements are higher than earlier measurements. This may be related to a higher concentration of dissolved organic carbon found in the present samples (500 μM) which is much higher than the values in ocean waters (~65 μM).  相似文献   

15.
The diffusion of water in a peralkaline and a peraluminous rhyolitic melt was investigated at temperatures of 714–1,493 K and pressures of 100 and 500 MPa. At temperatures below 923 K dehydration experiments were performed on glasses containing about 2 wt% H2O t in cold seal pressure vessels. At high temperatures diffusion couples of water-poor (<0.5 wt% H2O t ) and water-rich (~2 wt% H2O t ) melts were run in an internally heated gas pressure vessel. Argon was the pressure medium in both cases. Concentration profiles of hydrous species (OH groups and H2O molecules) were measured along the diffusion direction using near-infrared (NIR) microspectroscopy. The bulk water diffusivity () was derived from profiles of total water () using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between and Both methods consistently indicate that is proportional to in this range of water contents for both bulk compositions, in agreement with previous work on metaluminous rhyolite. The water diffusivity in the peraluminous melts agrees very well with data for metaluminous rhyolites implying that an excess of Al2O3 with respect to alkalis does not affect water diffusion. On the other hand, water diffusion is faster by roughly a factor of two in the peralkaline melt compared to the metaluminous melt. The following expression for the water diffusivity in the peralkaline rhyolite as a function of temperature and pressure was obtained by least-squares fitting:
where is the water diffusivity at 1 wt% H2O t in m2/s, T is the temperature in K and P is the pressure in MPa. The above equation reproduces the experimental data (14 runs in total) with a standard fit error of 0.15 log units. It can be employed to model degassing of peralkaline melts at water contents up to 2 wt%.  相似文献   

16.
Summary The Karimnagar granulite terrain is an integral part of the Eastern Dharwar Craton (EDC). It has received much interest because of the only reported granulite facies rocks in the EDC. These granulites contain quartz-free sapphirine-spinel-bearing granulites, kornerupine – bearing granulites, mafic granulites, orthopyroxene-cordierite gneisses, charnockites, amphibolites, dolerite dykes, granite gneisses, quartzites and banded magnetite quartzite. The orthopyroxene-cordierite gneisses occur as enclaves within granite-gneiss in association with banded magnetite quartzites, charnockites and amphibolites. The observed reaction textures, spectacular as they are, have an extraordinary information content within a tiny domain. Coronas, symplectites and resorption textures are of particular interest as they reflect discontinuous or continuous reactions under changing physical conditions. The main mineral assemblages encountered in these gneisses are orthopyroxene – cordierite – biotite – plagioclase – perthite – quartz and garnet – orthopyroxene – cordierite – biotite – quartz – plagioclase – perthite ± sillimanite. Multiphase reaction textures in conjunction with mineral chemical data in the KFMASH system indicate the following reactions: Based on chemographic relationships and petrogenetic grids in the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system, a sequence of prograde (early stage), isothermal decompression (middle stage) and retrograde (late stage) reactions (‘back reactions’ and hydration reactions) are inferred. Relatively lower PT estimates (0.35 GPa/550–750 °C) obtained from the different geothermobarometers are attributed to late Fe–Mg re-equilibration during cooling. Therefore, the convergence method has been applied to retrieve simultaneously the PT conditions of the thermal peak of metamorphism. The near thermal peak condition of metamorphism estimated by the convergence method are 850 °C/0.62 GPa. The PT estimates define a retrograde trajectory with substantial decompression.  相似文献   

17.
Oxygen isotope fractionation between rutile and water   总被引:1,自引:0,他引:1  
Synthetic rutile-water fractionations (1000 ln α) at 775, 675, and 575° C were found to be ?2.8, ?3.5, and ?4.8, respectively. Partial exchange experiments with natural rutile at 575° C and with synthetic rutile at 475° C failed to yield reliable fractionations. Isotopic fractionation within the range 575–775° C may be expressed as follows: 1 $$1000\ln \alpha ({\rm T}i{\rm O}_{2 } - H_2 O) = - 4.1 \frac{{10^6 }}{{T_{k^2 } }} + 0.96$$ . Combined with previously determined quartz-water fractionations, the above data permit calibration of the quartz-rutile geothermometer: 1 $$1000\ln \alpha ({\text{S}}i{\rm O}_{2 } - Ti{\rm O}_{2 } ) = 6.6 \frac{{10^6 }}{{T_{k^2 } }} - 2.9$$ . When applied to B-type eclogites from Europe, as an example, the latter equation yields a mean equilibration temperature of 565° C.  相似文献   

18.
This paper presents a design approach for strip footings upon glacier ice. Safety against ultimate limit state is proved by the geotechnical slip-line field solution by Prandtl. Glacier ice at 0°C can be modelled as purely cohesive material. Statistical evaluation of uniaxial compression tests with high strain rate revealed a mean value of the cohesion of 600 kPa and a characteristic value c k = 355 kPa (5% fractile). With a coefficient of variation V c = 0.3, the partial safety factor turns out to be γ c = 1.9. An approximate solution for estimating the creep settlement rate is presented to check the serviceability limit state: with the width b of the strip foundation, p the foundation pressure and for ice at 0°C. Experiences on Stubai glacier with grate shaped footings showed that creep settlements occurring per year due to maximum foundation pressures 250 kPa did not influence the operation and the maintenance of the cable cars.  相似文献   

19.
The activity of silica in kimberlites,revisited   总被引:1,自引:1,他引:0  
The activity of silica in a silicate liquid in equilibrium with olivine and orthopyroxene decreases with increasing pressure. In contrast, the activity of silica in an unbuffered silicate liquid changes little with pressure. Although the implications of these pressure dependencies have been considered by previous authors in terms of inferring pressures of origin of magmas, less consideration has been given to the implications of these dependencies on the evolution of the magma en route to the surface, or to the mantle through which the magma passes. In this paper, a combination of Schreinemakers’ analysis in isothermal section and calculated reactions in space is used to (a) rationalize the absence of orthopyroxene xenocrysts in kimberlites and the relative abundance of olivine “megacrysts” therein, (b) propose another reason for the paucity of xenocrystic mantle-derived carbonates in kimberlites, (c) explain why clinopyroxene is much less reactive in the kimberlite melt than is orthopyroxene, and (d) explore the implications of the relative stabilities of olivine, orthopyroxene, and clinopyroxene in kimberlitic magma for the mantle through which the magma transits.
Robert W. LuthEmail:
  相似文献   

20.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号