首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Alkyl nitrate yields from the NO x photooxidations of neopentane, 2-methylbutane and 3-methylpentane have been determined over the temperature and pressure ranges 281–323 K and 54–740 torr, respectively. The formation of the alkyl nitrates is attributed to the reaction pathway (1b) $${\text{RO}}_{\text{2}} + {\text{NO}}^{{\text{ }}\underrightarrow {\text{M}}} {\text{ RONO}}_{\text{2}}$$ and rate constant ratios k 1b/(k 1a+k 1b) are estimated, where (1a) is the reaction pathway (1a) $${\text{RO}}_{\text{2}} + {\text{NO}} \to {\text{RONO}}_{\text{2}} .$$ A method for estimating this rate constant ratio for primary, secondary and tertiary alkyl peroxy radicals is presented.  相似文献   

2.
The turbulent characteristics of the neutral boundary layer developing over rough surfaces are not well predicted with operational weather-forecasting models. The problem is attributed to inadequate mixing-length models, to the anisotropy of the flow and to a lack of controlled experimental data against which to validate numerical studies. Therefore, in order to address directly the modelling difficulties for the development of a neutral boundary layer over rough surfaces, and to investigate the turbulent momentum transfer of such a layer, a set of hydraulic flume experiments were carried out. In the experiments, the mean and turbulent quantities were measured by a particle image velocimetry (PIV) technique. The measured velocity variances and fluxes \({(\overline{{u_{i}^{\prime}}{u_{j}^{\prime}}})}\) in longitudinal vertical planes allowed the vertical and longitudinal gradients (?/?z and ?/?x) of the mean and turbulent quantities (fluxes, variances and third-order moments) to be evaluated and the terms of the evolution equations for ?e/?t, \({\partial \overline{u^{\prime 2}}/\partial t}\), \({\partial \overline{w^{\prime 2}}/\partial t}\) and \({\partial \overline{{u^{\prime}}{w^{\prime}}}/\partial t}\) to be quantified, where e is the turbulent kinetic energy. The results show that the pressure-correlation terms allow the turbulent energy to be transferred equitably from \({\overline{{u^{\prime}}^{2}}}\) to \({\overline{{w^{\prime}}^{2}}}\). It appears that the repartition between the constitutive terms of the budget of e, \({\overline{{u^{\prime}}^{2}}}\), \({\overline{{w^{\prime}}^{2}}}\) and \({\overline{{u^{\prime}}{w^{\prime}}}}\) is not significantly affected by the development of the rough neutral boundary layer. For the whole evolution, the transfers of energy are governed by the same terms that are also very similar to the smooth-wall case. The PIV measurements also allowed the spatial integral scales to be computed directly and to be compared with the dissipative and mixing length scales, which were also computed from the data.  相似文献   

3.
Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation \(\Phi _M \left( {{z \mathord{\left/ {\vphantom {z L}} \right. \kern-0em} L}} \right) = \left( {{{1 + 5_Z } \mathord{\left/ {\vphantom {{1 + 5_Z } L}} \right. \kern-0em} L}} \right)\) according to $$\Phi _M^{\text{0}} \simeq \left( {{{1 + 5z} \mathord{\left/ {\vphantom {{1 + 5z} L}} \right. \kern-\nulldelimiterspace} L}} \right)\exp \left[ { - 0.7\left( {{{1 - z} \mathord{\left/ {\vphantom {{1 - z} z}} \right. \kern-\nulldelimiterspace} z}_ * } \right)} \right]$$ , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value (z *N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.  相似文献   

4.
A step-up street canyon is a characteristic urban element composed of two buildings in which the height of the upwind building ( $H_\mathrm{u}$ ) is less than the height of the downwind building ( $H_\mathrm{d}$ ). Here, the effect of canyon geometry on the flow structure in isolated step-up street canyons is investigated through isothermal wind-tunnel measurements. The measurements were acquired along the vertical symmetry plane of model buildings using two-dimensional particle image velocimetry (PIV) for normal approach flow. The building-height ratios considered were: $H_\mathrm{d}/ H_\mathrm{u} \approx 3$ , and $H_\mathrm{d}/ H_\mathrm{u} \approx 1.67$ . For each building-height ratio, the along-wind lengths (L) of the upwind and downwind buildings, and the street-canyon width (S) were kept constant, with $L \approx S$ . The cross-wind widths (W) of the upwind and downwind buildings were varied uniformly from $W/S \approx 1$ through $W/S \approx 4$ , in increments of $W/S \approx 1$ . The objective of the work was to characterize the changes in the flow structure in step-up canyons as a function of W/S, for fixed L, S, and $H_\mathrm{d}/H_\mathrm{u}$ values. The results indicate that the in-canyon flow structure does not vary significantly for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ for the W/S values considered. Qualitatively, for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ , the upwind building behaves as an obstacle in the upwind cavity of the downwind building. In contrast, the flow patterns observed for the $H_\mathrm{d}/H_\mathrm{u} \approx 1.67$ configurations are unique and counter-intuitive, and depend strongly on building width (W/S). For $W/S \approx 1$ and $W/S \approx 2$ , the effect of lateral flow into the canyon is so prominent that even the mean flow patterns are highly ambiguous. For $W/S \approx 3$ and 4, the flow along the vertical symmetry plane is more shielded from the lateral flow, and hence a stable counter-rotating vortex pair is observed in the canyon. In addition to these qualitative features, a quantitative analysis of the mean flow field and turbulence stress field is presented.  相似文献   

5.
We discuss the impact of the differential treatment of the roughness lengths for momentum and heat ( $z_{0\mathrm{m}}$ and $z_{0\mathrm{h}}$ ) in the flux parametrization scheme of the high-resolution regional model (HRM) for a heterogeneous terrain centred around Thiruvananthapuram, India (8.5°N, 76.9°E). The magnitudes of sensible heat flux (H) obtained from HRM simulations using the original parametrization scheme differed drastically from the concurrent in situ observations. With a view to improving the performance of this parametrization scheme, two distinct modifications are incorporated: (1) In the first method, a constant value of 100 is assigned to the $z_{0\mathrm{m}}/z_{0\mathrm{h}}$ ratio; (2) and in the second approach, this ratio is treated as a function of time. Both these modifications in the HRM model showed significant improvements in the H simulations for Thiruvananthapuram and its adjoining regions. Results obtained from the present study provide a first-ever comparison of H simulations using the modified parametrization scheme in the HRM model with in situ observations for the Indian coastal region, and suggest a differential treatment of $z_{0\mathrm{m}}$ and $z_{0\mathrm{h}}$ in the flux parametrization scheme.  相似文献   

6.
The current outbreak of mountain pine beetle (MPB) that started in the late 1990s in British Columbia, Canada, is the largest ever recorded in the north American native habitat of the beetle. The killing of trees is expected to change the vertical distribution of net radiation ( $Q^*$ Q ? ) and the partitioning of latent ( $Q_\mathrm{E}$ Q E ) and sensible ( $Q_\mathrm{H}$ Q H ) heat fluxes in the different layers of an attacked forest canopy. During an intensive observation period in the summer of 2010, eddy-covariance flux and radiation measurements were made at seven heights from ground level up to 1.34 times the canopy height in an MPB-attacked open-canopy forest stand $(\hbox {leaf area index} = 0.55~\mathrm{{m}}^{2}\ \mathrm{{m}}^{-2})$ ( leaf area index = 0.55 m 2 m - 2 ) in the interior of British Columbia, Canada. The lodgepole pine dominated stand with a rich secondary structure (trees and understorey not killed by the beetle) was first attacked by the MPB in 2003 and received no management. In this study, the vertical distribution of the energy balance components and their sources and sinks were analyzed and energy balance closure (EBC) was determined for various levels within the canopy. The low stand density resulted in approximately 60 % of the shortwave irradiance and 50 % of the daily total $Q^*$ Q ? reaching the ground. Flux divergence calculations indicated relatively strong sources of latent heat at the ground and where the secondary structure was located. Only very weak sources of latent heat were found in the upper part of the canopy, which was mainly occupied by dead lodgepole pine trees. $Q_\mathrm{H}$ Q H was the dominant term throughout the canopy, and the Bowen ratio ( $Q_\mathrm{H}/Q_\mathrm{E}$ Q H / Q E ) increased with height in the canopy. Soil heat flux ( $Q_\mathrm{G}$ Q G ) accounted for approximately 4 % of $Q^*$ Q ? . Sensible heat storage in the air ( $\Delta Q_\mathrm{S,H}$ Δ Q S , H ) was the largest of the energy balance storage components in the upper canopy during daytime, while in the lower canopy sensible heat storage in the boles ( $\Delta Q_\mathrm{S,B}$ Δ Q S , B ) and biochemical energy storage ( $\Delta Q_\mathrm{S,C}$ Δ Q S , C ) were the largest terms. $\Delta Q_\mathrm{S,H}$ Δ Q S , H was almost constant from the bottom to above the canopy. $\Delta Q_\mathrm{S,C}$ Δ Q S , C , $\Delta Q_\mathrm{S,B}$ Δ Q S , B and latent heat storage in the air ( $\Delta Q_\mathrm{S,E}$ Δ Q S , E ) varied more than $\Delta Q_\mathrm{S,H}$ Δ Q S , H throughout the canopy. During daytime, energy balance closure was high in and above the upper canopy, and in the lowest canopy level. However, where the secondary structure was most abundant, ${\textit{EBC}} \le 66\,\%$ EBC ≤ 66 % . During nighttime, the storage terms together with $Q_\mathrm{G}$ Q G made up the largest part of the energy balance, while $Q_\mathrm{H}$ Q H and $Q_\mathrm{E}$ Q E were relatively small. These radiation and energy balance measurements in an insect-attacked forest highlight the role of secondary structure in the recovery of attacked stands.  相似文献   

7.
In steady, neutrally-stratified flow over uniform terrain, the Kolmogorov constant for the one-dimensional spectrum in the inertial subrange (α 1) and the von Karman constant of the logarithmic profile (k) are shown to be related by $$\alpha _1 k^{{4 \mathord{\left/ {\vphantom {4 3}} \right. \kern-\nulldelimiterspace} 3}} = \left[ {\frac{{\sum \phi }}{{0.555}}} \right]\left[ {\frac{{nz}}{{\bar U_z }}} \right]^{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \left[ {\frac{{\ln z_2 /z_1 }}{{\bar U_2 - \bar U_1 }}} \right]^2 \simeq 0.136,$$ , where the numerical value results from field measurements recorded in near-ideal conditions. This experimentally-observed Kolmogorov-von Karman ‘K-von K’ product is close to the value designated by a one-dimensional equivalent of the theoretical relation previously given by Roth (1970). More-over, it is in remarkably close agreement with new values of both constants independently proposed in recent years.  相似文献   

8.
The scalar flux–gradient relationships of temperature ( $\phi _{T}$ ? T ) and specific humidity ( $\phi _{q}$ ? q ) under unstable conditions are investigated using eddy-covariance measurements of air–sea turbulent fluxes and vertical profiles of temperature and specific humidity collected from a marine meteorological platform. The gradients of temperature and specific humidity are obtained from measurements at five heights above the sea surface using the log-square fitting method and the simpler first-order approximation method. The two methods yield similar results. The proposed flux–gradient relationships $\phi _{T}$ ? T and $\phi _{q}$ ? q covers a wide range of instability: the stability parameter $\zeta $ ζ ranges from $-$ ? 0.1 to $-$ ? 50. The functional form of the proposed flux–gradient relationships is an interpolation between the Businger–Dyer relation and the free convection relation, which includes the “ $-$ ? 1/2” and “ $-$ ? 1/3” scaling laws at two different stability regimes. The widely used COARE 3.0 algorithm, which is an interpolation between the integrals of the Businger–Dyer and the free convection relations, is also evaluated and compared. The analysis and comparisons show that both schemes generate reasonable values of $\phi _{q}$ ? q in the whole unstable regime. The COARE 3.0 algorithm, however, overestimates $\phi _{T}$ ? T values under very unstable conditions. The errors in the flux–gradient relationships induced by the random errors in the turbulence measurements are assessed. When the random errors are taken into account, the observations agree with predictions of various schemes fairly well, implying that the dominant transport mechanism is adequately captured by the Monin–Obukhov similarity theory. The study also shows that $\phi _{q}$ ? q is significantly ${>}\phi _{T}$ > ? T under unstable conditions and that the ratio $\phi _{q}/\phi _{T}$ ? q / ? T increases with $-\zeta $ ? ζ . The ratio of $\phi _{q}$ ? q to $\phi _{T}$ ? T and the ratio of turbulent transport efficiencies of heat and water vapour ( $R_{wT}/R_{wq}$ R wT / R wq ) suggest that heat is transported more efficiently than water vapour under unstable conditions.  相似文献   

9.
Climate and atmospheric CO2 concentration are intimately coupled in the Earth system: CO2 influences climate through the greenhouse effect, but climate also affects CO2 through its impact on the amount of carbon stored on land and in the ocean. The change in atmospheric CO2 as a response to a change in temperature ( $\varDelta CO_{2}/\varDelta T$ ) is a useful measure to quantify the feedback between the carbon cycle and climate. Using an ensemble of experiments with an Earth system model of intermediate complexity we show a pronounced time-scale dependence of $\varDelta CO_{2}/\varDelta T$ . A maximum is found on centennial scales with $\varDelta CO_{2}/\varDelta T$ values for the model ensemble in the range 5–12 ppm °C?1, while lower values are found on shorter and longer time scales. These results are consistent with estimates derived from past observations. Up to centennial scales, the land carbon response to climate dominates the CO2 signal in the atmosphere, while on longer time scales the ocean becomes important and eventually dominates on multi-millennial scales. In addition to the time-scale dependence, modeled $\varDelta CO_{2}/\varDelta T$ show a distinct dependence on the initial state of the system. In particular, on centennial time-scales, high $\varDelta CO_{2}/\varDelta T$ values are correlated with high initial land carbon content. A similar relation holds also for the CMIP5 models, although for $\varDelta CO_{2}/\varDelta T$ computed from a very different experimental setup. The emergence of common patterns like this could prove to usefully constrain the climate–carbon cycle feedback.  相似文献   

10.
The characteristics of the temporal and height variations of the temperature structure parameter $C_\mathrm{T}^{2}$ in strongly convective situations derived from the sodar echo-signal intensity measurements were analyzed for the first 100 m. It was corroborated that the probability density function (pdf) of the logarithm of $C_\mathrm{T}^{2}$ in the lower convective boundary layer is markedly non-Gaussian, whereas turbulence theory predicts it to be normal. It was also corroborated that the sum of two weighted Gaussians, which characterize the statistics of $C_\mathrm{T}^{2}$ within convective plumes and in their environment and the probability of plume occurrence, well approximates the observed pdfs. It was shown that the height behaviour of the arithmetic mean of $ C_\mathrm{T}^{2}$ (both total and within plumes) follows well a power law $C_\mathrm{T}^{2} (z) \sim z^{-q}$ with the exponent $q$ close to the theoretically predicted value of 4/3. But for the geometrical means of $C_\mathrm{T}^{2}$ (both total and within the plumes), $q$ is close to 1. The difference between arithmetically and geometrically averaged $C_\mathrm{T}^{2}$ profiles was analyzed. The vertical profiles of the standard deviation, skewness and kurtosis of $\hbox {ln}C_\mathrm{T}^{2}$ pdfs were analyzed to show their steady behaviour with height. The standard deviations of the logarithm of $C_\mathrm{T}^{2}$ within the plumes and between them are similar and are 1.5 times less than the total standard deviation. The estimate of the variability index $F_\mathrm{T}$ and its height behaviour were obtained, which can be useful to validate some theoretical and modelling predictions. The vertical profiles of the skewness and kurtosis show the negative asymmetry of pdfs and their flatness, respectively. The spectra of variations in $\hbox {ln}C_\mathrm{T}^{2}$ are shown to be satisfactorily fitted by the power law $f^{-\gamma } $ in the frequency range 0.02 and 0.2 Hz, with the average exponent $\approx $ 1.27  $\pm $  0.22.  相似文献   

11.
It is shown that predictions of a numerical trajectory-simulation method agree closely with the Project Prairie Grass observations of the concentrations 100 m downwind of a continuous point source of sulphur dioxide if the height (z) dependence of the Lagrangian length scale Λ L is chosen as: whereL is the Monin-Obukhov length. The value of 0.5 for Λ L /z in neutral conditions is consistent with the findings of Reid (1979) for the Porton experiment, and is also shown to be the best choice for simulation of an experiment in which concentration profiles were measured a short distance (< 40 m) downwind of an elevated point source of glass beads (40 μn diameter). $$\begin{gathered} \Lambda _L = 0.5z\left( {1 - 6\frac{z}{L}} \right)^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} L< 0 \hfill \\ \Lambda _L = 0.5z/\left( {1 + 5\frac{z}{L}} \right)L > 0 \hfill \\ \end{gathered} $$   相似文献   

12.
The El Ni?o-Southern Oscillation (ENSO) is a major driver of climate variability in many parts of the world. Impressive progress has been made in the last 25?years in consolidating the scientific and mathematical basis to our understanding of ENSO. This includes the development and analysis of a hierarchy of models??including simple analogue models??to simulate and understand ENSO physics. The delayed-action oscillator (DAO) equation has been a particularly important analogue model in the historical development of our understanding of ENSO physics, and numerical solutions of this equation have been explored in detail in previous studies. Given this importance, it is surprising that no exact analytic solutions to the equation have been provided previously in the ENSO literature. This situation is rectified here by deriving and presenting analytic solutions to the linear DAO equation $ \frac{{dT}}{{dt}} = aT - bT\left( {t - \tau } \right) $ for parameter values relevant to ENSO. Here, T is an index for ENSO variability at time t; a, b, and ?? (the delay time >0) are real parameters. A comparison between observations and (linear) theory suggests that ENSO behaves as a damped oscillator with a period of 3.8?years and a damping time-scale of 0.9?years. The parameter $ \gamma = b\tau {e^{ - a\tau }} $ is found to be crucial in understanding the behavior of the solution and the lowest frequency mode. For example, if ???>?1/e the solution is oscillatory. Exact analytic solutions to the DAO equation which are phase-locked to the annual cycle??as is the case for ENSO??are also obtained. The overall (annual average) stability of a phase-locked system and its intrinsic periodicities differ from the corresponding properties of the system with parameters set to their annual averages (i.e., the corresponding solution which is not phase-locked). Phase-locking therefore alters the growth rate and period of the lowest frequency mode.  相似文献   

13.
A Reynolds-averaged Navier–Stokes model is used to investigate the evolution of the sectional drag coefficient and turbulent length scales with the layouts of aligned arrays of cubes. Results show that the sectional drag coefficient is determined by the non-dimensional streamwise distance (sheltering parameter), and the non-dimensional spanwise distance (channelling parameter) between obstacles. This is different than previous approaches that consider only plan area density $(\lambda _\mathrm{p})$ . On the other hand, turbulent length scales behave similarly to the staggered case (e. g. they are function of $\lambda _\mathrm{p}$ only). Analytical formulae are proposed for the length scales and for the sectional drag coefficient as a function of sheltering and channelling parameters, and implemented in a column model. This approach demonstrates good skill in the prediction of vertical profiles of the spatially-averaged horizontal wind speed.  相似文献   

14.
15.
This paper addresses the relation between the net-radiation (Q *) and the ground heat flux (Q G), the energy stored in the soil ( $\Updelta Q_{\rm S}$ ), and the residual of the energy partition (R = Q * ? Q H  ? Q E ) of urban and suburban areas of Oklahoma City, USA. These three forms of energy were observed or estimated from observations taken during Joint Urban 2003 Campaign. The database includes net-radiation, soil temperature, ground heat flux, and turbulent fluxes. In most cases the estimates of the energy stored in the soil were obtained by assuming roughly a certain type of soil and an effective soil depth. From the residuals it seems to be possible to distinguish the urban boundary layer from the suburban boundary layer when plotted as a function of net-radiation. Hysteresis coefficients were computed for fits of net-radiation against R, $\Updelta Q_{\rm S}$ and Q G. In particular, the hysteresis patterns show that Q * vs. R represents clearer urban areas or suburban areas under the influence of an urban “plume”. On the other hand, hysteresis curves obtained from $\Updelta Q_{\rm S}$ or Q G account for better the ground composition. A possible consequence is that the land use of urban areas could be roughly inferred from curve shapes such as Q * vs. R, or Q * versus another input variable representing the storage term. The objective is to show the variability of the subsurface-related energy fluxes across an urban area using these three different quantities and also to show that $\Updelta Q_{\rm S}, \,Q_{\rm G}$ , or R (and their corresponding hysteresis curves) are likely to be quantitatively different, which have not been clearly stated in the literature.  相似文献   

16.
A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal or radar hardware failures in CINRAD (China New Generation Weather Radar) SA and SB radar operational observations are investigated.In order to distinguish the test pattern from other types of radar echoes,such as precipitation,clear air and other non-meteorological echoes,five feature parameters including the effective reflectivity data percentage (Rz),velocity RF (range folding) data percentage (RRF),missing velocity data percentage (RM),averaged along-azimuth reflectivity fluctuation (RNr,z) and averaged along-beam reflectivity fluctuation (RNa,z) are proposed.Based on the fuzzy logic method,a test pattern identification algorithm is developed,and the statistical results from all the different kinds of radar echoes indicate the performance of the algorithm.Analysis of two typical cases with heavy precipitation echoes located inside the test pattern are performed.The statistical results show that the test pattern identification algorithm performs well,since the test pattern is recognized in most cases.Besides,the algorithm can effectively remove the test pattern signal and retain strong precipitation echoes in heavy rainfall events.  相似文献   

17.
Studies of the influence of orography on the dynamics of atmospheric processes usually assume the following relation as a boundary condition at the surface of the Earth, or at the top of the planetary layer: $$w = u\frac{{\delta z_0 }}{{\delta x}} + v\frac{{\delta z_0 }}{{\delta y}}$$ where u, v and w are the components of wind velocity along the x, y and z axes, respectively, and z 0 = z0(x, y) is the equation of the Earth's orography. We see that w, and consequently the influence of orography on the dynamics of atmospheric processes, depend on the wind (u, v) and on the slope of the obstacle (δz 0/δx, δz0/δy). In the present work, it is shown that the above relation for w is insufficient to describe the influence of orography on the dynamics of the atmosphere. It is also shown that the relation is a particular case of the expression: $$\begin{gathered} w_h = \left| {v_g } \right|\left[ {a_1 (Ro,s)\frac{{\delta z_0 }}{{\delta x}} + a_2 (Ro,s)\frac{{\delta z_0 }}{{\delta y}}} \right] + \hfill \\ + \frac{{\left| {v_g } \right|^2 }}{f}\left[ {b_1 (Ro,s)\frac{{\delta ^2 z_0 }}{{\delta x^2 }} + b_2 (Ro,s)\frac{{\delta ^2 z_0 }}{{\delta y^2 }} + b_3 (Ro,s)\frac{{\delta ^2 z_0 }}{{\delta x\delta y}}} \right] \hfill \\ \end{gathered} $$ where ¦vv g¦ is the strength of the geostrophic wind, a 1, a2, b1, b2, b3 are functions of Rossby number Ro and of the external stability parameter s. The above relation is obtained with the help of similarity theory, with a parametrization of the planetary boundary layer. Finally, the authors show that a close connection exists between the effects described by the above expression and cyclo- and anticyclogenesis.  相似文献   

18.
In this study, we first show that tropical cyclone (TC) Usagi evolved from a mid-level vortex over the South China Sea (SCS) in August 2001. The initial disturbance of TC Usagi had a maximum potential vorticity (PV) near 500 hPa, and an anticyclonic circulation with a cold core near the surface. The cyclonic circulation and its warm core of the mid-level vortex developed gradually downward toward the surface when environmental easterly and dry air intruded from the upper troposphere; finally, the mid-level vortex evolved into TC Usagi under favorable environment conditions such as weak vertical wind shear, deep moist layer, etc. To investigate the dynamic and thermodynamic processes during TC Usagi genesis, the technique of piecewise PV inversion is employed. The results show that the actions of upper-layer PV and potential temperature anomalies were not important in TC Usagi genesis. Surface-layer thermal anomalies mainly produced negative disturbances of temperature at the vortex center below 800 hPa, which was unfavorable to the genesis of a cyclonic circulation near the surface. Middle-to-lower-layer latent heat played a key role in TC Usagi genesis and downward development of dynamic and thermodynamic processes. The actions of dry air intrusion from the upper troposphere, environmental westerly changing into easterly in the middle and lower troposphere, and baroclinic structure of the vortex were also important. The cyclonic circulation of the mid-level vortex could develop downward quickly from the middle troposphere toward the surface. However, whether the warm core of the vortex developed near the surface depended on the combined actions of surface-layer thermal anomaly and middle-to-lower-layer latent heat. Finally, we present a conceptual model of TC Usagi genesis induced by a mid-level vortex over the SCS.  相似文献   

19.
Scintillometer measurements of the turbulence inner-scale length $l_\mathrm{o }$ l o and refractive index structure function $C_n^2$ C n 2 allow for the retrieval of large-scale area-averaged turbulent fluxes in the atmospheric surface layer. This retrieval involves the solution of the non-linear set of equations defined by the Monin–Obukhov similarity hypothesis. A new method that uses an analytic solution to the set of equations is presented, which leads to a stable and efficient numerical method of computation that has the potential of eliminating computational error. Mathematical expressions are derived that map out the sensitivity of the turbulent flux measurements to uncertainties in source measurements such as $l_\mathrm{o }$ l o . These sensitivity functions differ from results in the previous literature; the reasons for the differences are explored.  相似文献   

20.
Daily temperature records including daily minimum, maximum, and average temperature from 190 meteorological stations over China during 1951–2000 are analyzed from two perspectives: (a) long-term persistence in direction of time varies, and (b) standard deviation in direction of amplitude varies. By employing the detrended fluctuation analysis (DFA), we find all the temperature records are long-term correlated, while the exponent α obtained from DFA varies from different districts of China due to different climate conditions, such as the southwest monsoon, subtropical high, northeast cold vortex, and the Tibetan plateau, etc. After we take the standard deviation into account, a new index χ?=?α?×?σ, which has been proposed recently, can be obtained. By further rescaling it as $ \chi = \overline \chi - {{1} \left/ {5} \right.} \times {\sigma_{{\overline \chi }}} $ , we find an obvious change of χ for these three kinds of time series, from which the whole China can be divided into two groups, which are comparatively consistent with dry/wet distributions in the south–north areas over China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号