首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Wave types of landslide generated impulse waves   总被引:2,自引:0,他引:2  
Subaerial landslide generated impulse waves were investigated in a prismatic wave channel. Seven governing parameters, namely the still water depth, slide impact velocity, slide thickness, bulk slide volume, bulk slide density, slide impact angle, and grain diameter, were systematically varied. The generated impulse waves are nonlinear, intermediate- to shallow-water waves involving a small to considerable fluid mass transport. The Stokes wave, cnoidal wave, solitary wave, and bore theories were applied to describe the observed maximum waves. The theoretical and observed features of these four wave types are highlighted. A diagram allows to predict the wave type directly as a function of the slide parameters, the slide impact angle, and the still water depth.  相似文献   

2.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

3.
This paper investigates the evolution of wave shape over a low-crested structure (LCS) using a 2-D RANS-VOF model. The model predictions of surface elevation and wave skewness and asymmetry are in good agreement with the recent measurements collected in a small scale wave channel at the University of Cantabria (UCA). The empirical formulae relating wave skewness and asymmetry to local Ursell number by Peng et al. (2009) have been extended to include the effect of wave reflection and the ramp in front of LCS and a wider range of Ursell number in the present study. In the presence of LCS, wave skewness decreases slightly above the seaward slope, then increases rapidly up to a maximum value above the structure crest, and decreases drastically above the leeward slope. Wave asymmetry decreases sharply above the seaward slope to a negative minimum value at the structure crest, and then increases rapidly to a positive value above the leeward slope. Our bispectral analysis indicates that sum interactions increase skewness and decrease asymmetry while difference interactions have opposite effects and that the former dominate above the seaward slope and on the structure crest but the latter dominate above the leeward slope of LCS. The observed wave shape evolution over a LCS can be attributed to the changes in the interplay of sum and difference interactions. We found that incident wave height and wave period, relative structure freeboard, structure crest width and structure porosity are the controlling factors for wave shape evolution over LCS. This study provides new insights on the role of wave skewness and asymmetry in the breakwaters stability and sediment transport around the structure and on the beaches behind it.  相似文献   

4.
Existing models of the wave bottom boundary layer have focused on the vertical and temporal dynamics associated with monochromatic forcing. While these models have made significant advances, they do not address the more complicated dynamics of random wave forcing, commonly found in natural environments such as the surf zone. In the closed form solution presented here, the eddy viscosity is assumed to vary temporally with the bed shear velocity and linearly with depth, however, the solution technique is valid for any eddy viscosity which is separable in time and space. A transformation of the cross-shore velocity to a distorted spatial domain leads to time-independent boundary conditions, allowing for the derivation of an analytic expression for the temporal and vertical structure of the cross-shore velocity under an arbitrary wave field. The model is compared with two independent laboratory observations. Model calculations of the bed shear velocity are in good agreement with laboratory measurements made by Jonsson and Carlsen (1976, J. Hydraul. Res., 14, 45–60). A variety of monochromatic, skewed, and asymmetric wave forcing conditions, characteristic of those found in the surf zone, are used to evaluate the relative effects on the bed shear. Because the temporal variation of the eddy viscosity is assumed proportional to the bottom shear, a weakly nonlinear interaction is created, and a fraction of the input monochromatic wave energy is transferred to the odd harmonics. For a monochromatic input wave, the ratio of the third harmonic of velocity at the bed to the first is <10%. However, for a skewed and asymmetric input wave, this ratio can be as large as 30% and is shown to increase with increasing root-mean-square input wave acceleration. The work done by the fluid on the bed is shown to be a maximum under purely skewed waves and is directed onshore. Under purely asymmetric waves, the work done is significantly smaller and directed offshore.  相似文献   

5.
Abdul Hayir   《Ocean Engineering》2003,30(18):2329-2342
In this study, the motion of a submarine block slide, with variable velocities, and its effects on the near-field tsunami amplitudes are investigated. The numerical results show that the amplitudes generated by the slide are almost the same as those created by its average velocity when , where is average velocity of the slide and is the long period tsunami velocity in ocean of constant depth h. In contrast, the kinematic model of the slide must take into account time variations in the moving velocity, if , especially when .  相似文献   

6.
A series of hydraulic model tests has been carried out in a glass wave flume to investigate the influences of wave height, wave period, wave steepness, surf similarity parameter, roughness, layer thickness and porosity on wave run-up and overtopping of 1:2 sloped impermeable and permeable breakwaters fronted by a 1:10 gentle, smooth beach slope. The analysis of results involves the correlation between the overtopping energy transfer with the relative wall height and the relationship between wave run-up and overtopping rate. Further, measured wave run-up and overtopping rates are compared with the results given in the Shore Protection Manual (1984), Automated Coastal Engineering System (1992)and results of other investigators.  相似文献   

7.
Underwater landslide can trigger impulsive waves with high amplitude and run-up, which may cause substantial damage. In this work, the experimental investigations are performed to study the impulsive wave characteristics caused by underwater landslides. The effects of landslide geometry and kinematics on wave characteristics are studied by performing 84 laboratory experiments. The influences of thickness, volume and shape of failure mass on the characteristics of initial wave are discussed. The impacts of water body conditions such as the slope of sliding bed and the initial submergence of underwater landslide are also examined. The present experimental data as well as the available data in the literature are used to provide an applied method for prediction of the initial wave amplitude. The present prediction method is properly verified by several experimental, numerical and real case data.  相似文献   

8.
A one-dimensional high-resolution finite volume model capable of simulating storm waves propagating in the coastal surf zone and overtopping a sea wall is presented. The model (AMAZON) is based on solving the non-linear shallow water (NLSW) equations. A modern upwind scheme of the Godunov-type using an HLL approximate Riemann solver is described which captures bore waves in both transcritical and supercritical flows. By employing a finite volume formulation, the method can be implemented on an irregular, structured, boundary-fitted computational mesh. The use of the NLSW equations to model wave overtopping is computationally efficient and practically flexible, though the detailed structure of wave breaking is of course ignored. It is shown that wave overtopping at a vertical wall may also be approximately modelled by representing the wall as a steep bed slope. The AMAZON model solutions have been compared with analytical solutions and laboratory data for wave overtopping at sloping and vertical seawalls and good agreement has been found. The model requires more verification tests for irregular waves before its application as a generic design tool.  相似文献   

9.
The paper presents the comparison between the results of small-scale model tests and prototype measurements of wave overtopping at a rubble-mound breakwater. The specific structure investigated is the west breakwater of the yacht harbour of Rome at Ostia (Italy) and is characterized by a gentle seaward slope (1/4) and by a long, shallow foreshore. The laboratory tests firstly aimed at carefully reproducing two measured storms in which overtopping occurred and was measured. The tests have been carried out in two independent laboratories, in a wave flume and in a wave basin, hence using a two-dimensional (2-D) and a three-dimensional (3-D) setup. In the 2-D laboratory tests no overtopping occurred during the storm reproductions; in the 3-D case discharges five to ten times smaller than those observed in prototype have been measured. This indicates the existence of model and scale effects. These effects have been discussed on the basis of the results of several parametric tests, which have been carried out in both laboratories, in addition to the storm reproductions, varying wave and water level characteristics. Final comparison of all the performed tests with 86 prototype measurements still suggests the existence of scale and model effects that induce strong underestimation of overtopping discharge at small scale. The scale reproduction of wave breaking on the foreshore, together with the 3-D features of the prototype conditions and the absence of wind stress in the laboratory measurements, have been individuated as the main sources of scale and model effects. The paper also provides a comparison between the data and a largely used formula for wave overtopping discharges in the presence of structures similar to the one at hand. The suitable value of a roughness factor that appears in that formula is investigated and good agreement is found with other recent researches on rubble-mound breakwaters.  相似文献   

10.
Based on the time-dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation. The wave height of regular and irregular waves is numerically simulated by use of the parabolic mild slope equation considering the energy dissipation due to wave breaking. Comparison of numerical results with experimental data shows that the expression for the energy dissipation factor is reasonable. The effects of the wave breaking coefficient on the breaking point and the distribution of wave height after breaking are discussed through the study of a specific experimental topography.  相似文献   

11.
单桩基础周围斜坡海床中的波致孔隙水压力响应与纯斜坡海床存在较大差异。为了解不同波高、波周期条件下,单桩基础周围波浪传播变形及其对斜坡海床孔压振荡响应的影响,在波浪水槽末端铺设了长6 m、坡度1∶16的斜坡砂床进行试验。通过改变桩身位置和波浪参数,测量斜坡段各处波面形态,采集单桩周围孔隙水压力,分析了桩身位置及波浪参数对斜坡海床孔压响应的影响。结果表明:相同入射波条件下,随距坡脚水平距离增加,波高、近底流速和桩周孔隙水压力幅值都随之增大;桩周孔隙水压力幅值分布规律为:桩前孔压幅值明显大于桩侧与桩后孔压幅值。当Keulegan-Carpenter数大于6时,随着波高和波周期增大,马蹄涡产生的负压区使得桩侧海床孔隙水压力与纯斜坡海床孔隙水压力差值迅速增加。  相似文献   

12.
海洋资源开发引起海底软黏土的结构性破坏,导致土体强度弱化,在百年一遇的极端波浪作用时极易发生斜坡海床的局部失稳甚至大范围海底滑坡,给海洋工程建设和正常运营带来严重影响。目前,主要采用极限平衡法评价这类海底斜坡,但该法只能给出近似解。基于极限分析上限方法,推导了极端波浪诱发的波压力对斜坡海床的做功功率,建立了外力功与内能耗散率平衡方程;利用最优化方法,结合数值积分和强度折减技术,求解了不同时刻的斜坡海床稳定性系数,并针对扰动后的斜坡海床开展了有限元解的对比验证。在此基础上,深入探讨了不同波浪参数(波长、波高和水深)和坡长小于一个波长等极端条件下的海底斜坡稳定性。  相似文献   

13.
A theoretical analysis shows that the geometric characteristics of a storm-beach profile is governed by a modified Iribarren number which includes the effects among the factors of beach slope, breaking wave angle and wave steepness. A series of experiments have been conducted in a three-dimensional movable bed model on the conditions of two different beach slopes and two incident wave angles as well as several erosive wave steepnesses. Based on the experimental data, the relative importance of each factor involved in the parameter is discussed. The empirical relationships between the geometric characteristics of a storm-beach profile and the modified Iribarren number are proposed through regression analysis.  相似文献   

14.
The hydrodynamic pressures induced by regular waves around the circumference of a pipeline normal to the wave direction and near a rigid bed of slope 1:10 have been investigated in a wave flume. The pressures were integrated to obtain the force time history, from which the peak horizontal and vertical forces are evaluated. The maximum and root mean square horizontal and transverse force coefficients are correlated with the Keulegan–Carpenter (KC) number. The effect of the distance between the sloping bed and the pipeline on the force coefficients is discussed. The force coefficients are found to decrease with an increase in KC number and with the decrease in the relative clearance of the pipeline from the boundary. In addition, the reflection characteristics of the sloping bed in the presence of the pipeline as a function of surf similarity parameter and their comparison with the results from existing literature are also reported. The details of the model setup, experimental procedure, results and discussion are presented in this paper.  相似文献   

15.
The main purpose of this article is to systematically investigate the influence of offshore fringing reef topography on the infragravity-period harbor oscillations. The infragravity (IG) period oscillations inside an elongated harbor induced by normally-incident bichromatic wave groups are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. Based on an IG wave decomposition method, effects of plane reef-face slopes, reef-face profile shapes and the existence of reef ridge on bound and free IG waves and their relative components inside the harbor are comprehensively studied. For the given harbor and reef ridge, the range of the reef-face slopes and the various profile shapes studied in this paper, results show that the amplitude of the free IG waves inside the harbor increases with the increasing of the reef-face slope; while the bound IG waves inside the harbor seem insensitive to it. The effects of the profile shapes on the IG period waves inside the harbor are closely related to the width of the reef face. The existence of the reef ridge can relieve the bound IG waves to some extent when the incident short wave amplitudes are relatively large, while its effects on the free IG waves are negligible.  相似文献   

16.
This paper investigates wave-by-wave control of a wave energy converter using incident wave prediction based on up-wave surface elevation measurement. The goal of control is to approach the hydrodynamically optimum velocity leading to optimum power absorption. This work aims to study the gains in energy conversion from a deterministic wave propagation model that accounts for a range of group velocities in deriving the prediction. The up-wave measurement distance is assumed to be small enough to allow a deterministic propagation model, and further, both wave propagation and device response are assumed to be linear. For deep water conditions and long-crested waves, the propagation process is also described using an impulse response function (e.g. [1]). Approximate low and high frequency limits for realistic band-limited spectra are used to compute the corresponding group velocity limits. The prediction time into the future is based on the device impulse response function needed for the evaluation of the control force. The up-wave distance and the duration of measurement are then determined using the group velocity limits above.A 2-body axisymmetric heaving device is considered, for which power capture is through the relative heave oscillation between the two co-axial bodies. The power take-off is assumed to be linear and ideal as well as capable of applying the necessary resistive and reactive load components on the relative heave oscillation. The predicted wave profile is used along with device impulse response functions to compute the actuator force components at each instant. Calculations are carried out in irregular waves generated using a number of uni-modal wave spectra over a range of energy periods and significant wave heights. Results are compared with previous studies based on the use of instantaneous up-wave wave-profile measurements, both without and with oscillation constraints imposed. Considerable improvements in power capture are observed with the present approach over the range of wave conditions studied.  相似文献   

17.
T. C. Lee  C. P. Tsai  D. S. Jeng   《Ocean Engineering》2002,29(12):1577-1601
In the past few decades, considerable efforts have been devoted to the phenomenon of wave-seabed interaction. However, conventional investigations for determining wave characteristics have been focused on the wave nonlinearity. On the other hand, most previous works have been only concerned with the seabed response under the wave pressure, which was obtained from the assumption of a rigid seabed. In this paper, the inertia forces and employing a complex wave number are considered in the whole problem. Based on Biot’s poro-elastic theory, the problem of wave-seabed interaction is first treated analytically for a homogeneous bed of finite thickness and a new wave dispersion relationship is also obtained, in which the soil characteristics are included. The numerical results indicate that the effects of soil parameters significantly affect the wave characteristics (such as the damping of water wave, wave length and wave pressure). Furthermore, the effects of inertia forces on the wave-induced seabed response cannot always be ignored under certain combination of wave and soil conditions.  相似文献   

18.
The instantaneous turbulent velocity field created by the breaking of spilling regular waves on a plane slope was measured in a plane running parallel to the slope using particle image velocimetry. The measurement plane was located at a height of about 1 mm above the bed. The measurement area encompassed the region where the large eddies generated at incipient wave breaking impinged on the bottom inside the surf zone. A total of 30 trials were conducted under identical experimental conditions. In each trial, six consecutive wave cycles were recorded. The measured velocity fields were separated into a mean flow and a turbulence component by ensemble averaging. The instantaneous turbulent velocity fields were analyzed to determine the occurrence frequency, location, geometry and evolution of the large eddies, and their contributions to instantaneous shear stresses, turbulent kinetic energy and turbulence energy fluxes. The motion of single glass spheres along the bed was also investigated. The two-phase flow measurements showed that the velocity and displacement of large solid particles on a smooth bed were significantly affected by the magnitude and direction of turbulence velocities. Overall, this study has examined the kinematic and dynamic properties of large eddies impinging on the bed and the interaction of these large-scale turbulent flow structures with the mean flow. The study has also highlighted the important role of large eddies in sediment transport.  相似文献   

19.
世界大洋长历时局地风速和有效波高的统计与分析   总被引:1,自引:0,他引:1  
本文基于美国海军测地卫星高度计提供的全球范围长历时局地平均风速和有效波高资料进行统计分析,结果表明,世界大洋长历时局地平均风速和有效波高有明显的相关性,其散布点系统地位于Wilson提出的深水充分成长风浪平均风速和有效波高经验曲线之上;并从能量叠加平衡方程,近似定量估计出大洋中长历时涌浪有效波高与局地平均风速的关系。  相似文献   

20.
Change of shoreline wave climate caused by the installation of a wave farm is assessed using the SWAN wave model. The 30 MW-rated wave farm is called the ‘Wave Hub’ and will be located 20 km off the north coast of Cornwall, UK. Changes in significant wave height and mean wave period due to the presence of the Wave Hub are presented. The results suggest that the shoreline wave climate will be affected, although the magnitude of effects decreases linearly as wave energy transmitted increases. At probable wave energy transmission levels, the predicted change in shoreline wave climate is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号