共查询到20条相似文献,搜索用时 0 毫秒
1.
Principles used when constructing models for velocity spectra are reviewed. Based upon data from the Kansas and Minnesota experiments, simple spectral models are set up for all velocity components in stable air at low heights, and for the vertical spectrum in unstable air through a larger part of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8NKby% kaaa!37B5!\[f\]
m
for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit one curve.The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given.In stable, horizontal velocity spectra, there is often a gap at low frequencies. Using dimensional considerations and the spectral model previously derived, an expression for the gap frequency is found. 相似文献
2.
Stephen A. Conley Ian C. Faloona Donald H. Lenschow Teresa Campos Clifford Heizer Andrew Weinheimer Christopher A. Cantrell Roy L. Mauldin III Rebecca S. Hornbrook Ilana Pollack Alan Bandy 《Journal of Atmospheric Chemistry》2011,68(1):55-70
The Pacific Atmospheric Sulfur Experiment (PASE) was a field mission that took place aboard the NCAR C-130 airborne laboratory over the equatorial Pacific Ocean near Christmas Island (Kirimati, Republic of Kiribati) during August?CSeptember, 2007. Eddy covariance measurements of the ozone fluxes at various altitudes above the ocean surface, along with simultaneous mapping of the horizontal gradients provided a unique opportunity to observe all of the dynamical components of the ozone budget in this remote marine environment. The results of six daytime and two sunrise flights indicate that vertical transport into the marine boundary layer from above and horizontal advection by the tradewinds are both important source terms, while photochemical destruction consisting of 82% photolysis (leading to OH production), 11% reaction with HO2, and 7% reaction with OH provides the main sink. The overall photochemical lifetime of ozone in the marine boundary layer was found to be 6.5 days. Ocean uptake of ozone was observed to be fairly slow (mean deposition velocity of 0.024?±?0.014 cm s?1) accounting for a diurnally averaged loss rate that was ??30% as large as the net photochemical destruction. From the measurement of deposition velocity an ozone reactivity of ??50 s?1 in seawater is inferred. Due to the unprecedented measurement accuracy of the dynamical budget terms, unobserved photochemistry was able to be deduced, leading to the conclusion that 3.9?±?3.0 ppt (parts per trillion by volume) of NO is present on average in the daytime tropical marine boundary layer, broadly consistent with several previous studies in similar environments. It is estimated, however, that each ppt of BrO hypothetically present would counter each ppt of NO above the requisite 3.9 ppt needed for budget closure. The long-term budget of ozone is further analyzed in the buffer layer, between the boundary layer and free troposphere, and used to derive an entrainment velocity across the trade wind inversion of 0.51 ± 0.38 cm s?1. 相似文献
3.
4.
The non-stationary planetary boundary layer is parameterized for use in weather forecasting numerical models. 相似文献
5.
T. Nishanth M. K. Satheesh Kumar K. T. Valsaraj 《Journal of Atmospheric Chemistry》2012,69(2):101-126
Continuous measurements of surface ozone (O3), NOx (NO + NO2) and meteorological parameters have been made in Kannur (11.9?°N, 75.4?°E, 5?m asl), India from November 2009 to October 2010. It was observed that O3 and NOx showed distinct diurnal and seasonal variabilities at this site. The annual average diurnal profile of O3 showed a peak of (30.3?±?10.4) ppbv in the late afternoon and a minimum of (3.2?±?0.7) ppbv in the early morning. The maximum value of O3 mixing ratio was observed in winter (44?±?3.1) ppbv and minimum during monsoon (18.46?±?3.5) ppbv. The rate of production of O3 was found to be higher in December (10.1?ppbv/h) and lower in July (1.8?ppbv/h) during the time interval 0800?C1000?h. A correlation coefficient of 0.52 for the relationship between O3 and [NO2]/[NO] reveals the role of NO2 photolysis that generates O3 at this site. The correlation between O3 and meteorological parameters indicate the influence of seasonal changes on O3 production. Investigations were further extended to explore the week day weekend variations in O3 mixing ratio at an urban site reveals the enhancement of O3. The variations of O3 mixing ratio with seasonal air mass flows were elucidated with the aid of backward air trajectories. This study also indicates how vapor phase organic species present in the ambient air at this location may influence the complex chemistry involving (VOCs) that enhances the production of O3 at this location. 相似文献
6.
Ulrich Schumann 《Boundary-Layer Meteorology》1988,44(4):311-326
A simple model is deduced for the surface layer of a convective boundary layer for zero mean wind velocity over homogeneous rough ground. The model assumes large-scale convective circulation driven by surface heat flux with a flow pattern as it would be obtained by conditional ensemble averages. The surface layer is defined here such that in this layer horizontal motions dominate relative to vertical components. The model is derived from momentum and heat balances for the surface layer together with closures based on the Monin-Obukhov theory. The motion in the surface layer is driven by horizontal gradients of hydrostatic pressure. The balances account for turbulent fluxes at the surface and fluxes by convective motions to the mixed layer. The latter are the dominant ones. The model contains effectively two empirical coefficients which are determined such that the model's predictions agree with previous experimental results for the horizontal turbulent velocity fluctuations and the temperature fluctuations. The model quantitatively predicts the decrease of the minimum friction velocity and the increase of the temperature difference between the mixed layer and the ground with increasing values of the boundary layer/roughness height ratio. The heat transfer relationship can be expressed in terms of the common Nusselt and Rayleigh numbers, Nu and Ra, as Nu ~ Ra% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% aIXaaabaGaaGOmaaaaaaa!3779!\[{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\]. Previous results of the form Nu ~ Ra% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% aIXaaabaGaaG4maaaaaaa!377A!\[{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\] are shown to be restricted to Rayleigh-numbers less than a certain value which depends on the boundary layer/roughness height ratio. 相似文献
7.
K. R. L. Deusdará M. C. Forti L. S. Borma R. S. C. Menezes J. R. S. Lima J. P. H. B. Ometto 《Journal of Atmospheric Chemistry》2017,74(1):71-85
We assessed the rainwater chemistry, the potential sources of its main inorganic components and bulk atmospheric deposition in a rural tropical semiarid region in the Brazilian Caatinga. Rainfall samples were collected during two wet seasons, one during an extremely dry year (2012) and one during a year with normal rainfall (2013). According to measurements of the main inorganic ions in the rainwater (H+, Na+, NH4 +, K+, Ca2+, Mg2+, Cl?, NO3 ?, and SO4 2?), no differences were observed in the total ionic charge between the two investigated wet seasons. However, Ca2+, K+, NH4 + and NO3 ? were significant higher in the wetter year (p < 0.05) which was attributed to anthropogenic activities, such as organic fertilizer applications. The total ionic contents of the rainwater suggested a dominant marine contribution, accounting for 76 % and 58 % of the rainwater in 2012 and 2013, respectively. The sum of the non-sea-salt fractions of Cl?, SO4 2?, Mg2+, Ca2+ and K+ were 19 % and 33 % in 2012 and 2013, and the nitrogenous compounds accounted for 2.8 % and 6.0 % of the total ionic contents in 2012 and 2013, respectively. The ionic ratios suggested that Mg2+ was probably the main neutralizing constituent of rainwater acidity, followed by Ca2+. We observed a low bulk atmospheric deposition of all major rainwater ions during both wet seasons. Regarding nitrogen deposition, we estimated slightly lower annual inputs than previous global estimates. Our findings contribute to the understanding of rainfall chemistry in northeastern Brazil by providing baseline information for a previously unstudied tropical semiarid ecosystem. 相似文献
8.
Ian Faloona Stephen A. Conley Byron Blomquist Antony D. Clarke Vladimir Kapustin Steven Howell Don H. Lenschow Alan R. Bandy 《Journal of Atmospheric Chemistry》2009,63(1):13-32
Research flights with the National Center for Atmospheric Research (NCAR) C-130 airborne laboratory were conducted over the
equatorial ocean during the Pacific Atmospheric Sulfur Experiment (PASE). The focused, repetitive flight plans provided a
unique opportunity to explore the principal pathways of sulfur processing in remote marine environments in close detail. Fast
airborne measurements of SO2 using the Drexel University APIMS (Atmospheric Pressure Ionization Mass Spectrometer) instrument further provided unprecedented
insight into the complete budget of this important sulfur gas. In general, turbulent mixing in the marine boundary layer (MBL)
continuously depletes SO2 due to the shallow convection of the tropical trade wind regime by venting the gas into the buffer layer (BuL) above. However,
on nearly one-third of the flights a net import of SO2 into the MBL from the BuL was observed. Concurrent measurements of the DMS budget allowed for a heterogeneous S(IV) oxidation
rate to be inferred from the SO2 budget residual. The average heterogeneous loss rate was found to be 0.05 h−1, which taken in conjunction with the observed aerosol surface area distributions and O3 levels indicates that the supermicron aerosols maintain a near neutral pH. The average dry deposition velocity of SO2 was found to be 0.4 cm s−1, about 30% lower than predicted by standard parameterizations. The yield of SO2 from DMS oxidation was found to be near unity. The mission averages indicate that approximately 57% of the SO2 in the MBL is lost to aerosols, 27% is subject to dry deposition, 7% is mixed into the BuL, and 10% is oxidized by OH. 相似文献
9.
Gary K. Greenhut 《Boundary-Layer Meteorology》1982,24(2):253-264
Turbulence data obtained aboard a NOAA P-3 research aircraft during flights over the eastern equatorial Pacific Ocean are used to obtain mean vertical profiles of water vapor density, potential temperature, wind speed and fluxes of latent heat, buoyancy and momentum. The variation of eddy fluxes and bulk transfer coefficients as a function of atmospheric stability are plotted for two of the flights. The observed transfer coefficients generally agree with those obtained from parameterizations based on surface-layer similarity theory (Deardorff, 1968; Kondo, 1975). 相似文献
10.
The role of perturbations of reactive trace gas concentration distributions in turbulent flows in the planetary boundary layer
(PBL) is discussed. The paper focuses on disturbances with larger spatial scales. Sequential nesting of a chemical transport
model is applied to assess the effect of neglecting subgrid chemical perturbations on the formation and loss of ozone, NO
x
, peroxyacetyl nitrate (PAN) and HNO3 calculated with a highly complex chemical mechanism. The results point to characteristic differences regarding the process
of mixing of chemically reactive species in the PBL and lower troposphere. 相似文献
11.
An analytical framework is proposed for studying variations in the diurnal wind structure in the planetary boundary layer (PBL) and the evolution of the low-level nocturnal jet. A time-dependent eddy-diffusivity coefficient corresponding to solar input is proposed, and an appropriate coordinate transformation ensures that mixing height varies continuously with ground heat-flux changes. The solution exhibits the receding character of the daytime PBL as evening approaches, thereby dividing the PBL into two regimes — the one just above the ground, representing the nocturnal boundary layer, and the region above it. It is assumed that inertial oscillations (IO) are triggered in the upper layer at about the time of sunset when the reversal in the direction of ground heat flux is felt in the upper layer. Two approaches are adopted to determine the characteristic features of IO and the evolution of the nocturnal low-level jet. The first one is based on the physical principle that release of horizontal momentum due to deviation from the geostrophic wind gives rise to the IO. The solution captures all the characteristic features of the IO, such as phase shift and decreasing amplitude of the IO with increasing height. According to this analysis the IO is triggered at a level as soon as the top of the receding boundary layer leaves that level. The solution is discontinuous with respect to the vertical coordinate. In the second approach we solve an initial-value problem to determine the solution in the upper layer, assuming that at about the time of sunset there is a rapid collapse of the daytime PBL to the steady, nocturnal boundary layer. The assumption is based on the mixing-height profiles prepared from climatological data collected at Delhi. The solution for the nocturnal boundary-layer regime is then obtained as a boundary-value problem. The solutions so obtained are continuous throughout the domain of interest and exhibit the characteristic features of an IO. The analysis leads to the conditions under which a low-level nocturnal jet is produced and provides quantitative estimates of the parameters, such as length of night, latitude, mixing height at sunset and nocturnal mixing height, that are conducive to the generation of a jet. The nocturnal wind profile produced by this approach compares well both with typical atmospheric data observed at Delhi and with output from a mesoscale numerical model. There is still some uncertainty related to the time of initiation of the IO as a function of latitude. 相似文献
12.
C. H. Huang 《Boundary-Layer Meteorology》1975,9(4):391-409
The structure of neutral barotropic planetary boundary layers is investigated. The dynamic equations have been numerically solved by an iterative method. Similarity and dissimilarity of the atmospheric boundary layer are explored. The distribution of the velocity defect functions, hypothesized by the similarity theory, is obtained. Comparison between present numerical results, i.e., shear stress, drag coefficient, and cross-isobar angle, and other results and experimental data are made. It appears that the present model is more economical and its results are closer to experimental data than other models. Some properties of the atmospheric structure are inferred directly from the dynamic equations. 相似文献
13.
14.
Profile data from simultaneous sodar and tethered balloon measurements have been analyzed with respect to the complex structure of the atmospheric boundary layer in the Upper Rhine Valley. Special attention was focused on ozone concentration profiles measured with a novel lightweight ozone sensor at the balloon. In general, good agreement was found between the signature of the ozone concentration profiles and special features of the backscattered sound intensity profiles. This allows reliable estimation of the mixing height from the sodar data even in a complex stable ABL, except for very shallow mixing layers (below about 75 m), which could not be detected by the sodar. 相似文献
15.
Hans Økland 《Boundary-Layer Meteorology》1983,25(2):121-141
A vertically integrated model of a developing boundary layer over a wet surface is presented, and the expected change in the relative humidity is discussed. For the case of cold air moving over a water surface of constant temperature, analytical solutions of the model equations are obtained, giving the height, temperature and relative humidity of the boundary layer as functions of the distance travelled by the air column. The relation to the problem of sea smoke is discussed. 相似文献
16.
The contribution of radiative and turbulent processes to nocturnal atmospheric cooling has been studied using the experimental data of the ECLATS experiment which took place in the African Sahel; the radiative and turbulent fluxes were determined taking thermal advection into account. The turbulent cooling rate is predominant; it decreases strongly with altitude at the beginning of the night, which is the main cause of inversion formation. 相似文献
17.
A. Wiin-Nielsen 《Boundary-Layer Meteorology》1974,6(3-4):459-476
The Ekman-Taylor problem for the planetary boundary layer is solved in the case of a thermal wind which varies linearly with height. The upper boundary condition is a vanishing ageostrophic wind, while the lower boundary condition is continuity of the stress vector across the interface between the planetary boundary layer and the surface layer. The latter condition is used to determine the magnitude and the direction of the wind at the bottom of the Ekman layer.Theoretical hodographs are compared with observed hodographs based on five years of ohservations from Ship N in the Pacific, giving fair agreement.The divergence, the vorticity, and the vertical velocity are calculated through the Ekman layer with emphasis on differences between the classical barotropic and the baroclinic cases; these differences are significant, especially in the vertical velocities as compared to the standard approximation.An extension of the present study to include thermal stratification is desirable. 相似文献
18.
本文根据320米气象塔上水平风速的观测资料,分析了不同天气条件下边界层大气中湍流的宽谱特性及其垂直分布结构. 结果表明,大气边界层水平风速低频谱的垂直分布是很复杂的,在不同的天气条件下,这种垂直分布特征具有明显的差异.边界层温度和风速的垂直结构也会影响到水平风速低频谱的垂直分布. 在水平风速低频谱中,除了与天气过程有关的4天周期峰值和反映气象要素日变化频率的峰值外,在十几分钟到几十分钟频率范围内还存在着几个峰值,而且有时在不同的高度上,峰值频率有所不同.这可能反映了一些中尺度系统的特征,也可能是这些中尺度系统与局地地形的综合作用所引起的. 相似文献
19.
Dennis L. Savoie Joseph M. Prospero John T. Merrill Mitsuo Uematsu 《Journal of Atmospheric Chemistry》1989,8(4):391-415
Weekly bulk aerosol samples collected at Funafuti, Tuvalu (8°30S, 179°12E), American Samoa (14°15S, 170°35W), and Rarotonga (21°15S, 159°45W), from 1983 through most of 1987 have been analyzed for nitrate and other constituents. The mean nitrate concentration is about 0.11 g m–3 at each of these stations: 0.107±0.011 g m–3 at Funafuti; 0.116±0.008 at American Samoa; and 0.117±0.010 at Rarotonga. Previous measurements of mineral aerosol and trace metal concentrations at American Samoa are among the lowest ever recorded for the near-surface troposphere and indicate that this region is minimally affected by transport of soil material and pollutants from the continents. Consequently, the nitrate concentration of 0.11 g m–3 can be regarded as the natural level for the remote marine boundary layer of the tropical South Pacific Ocean. In contrast, over the tropical North Pacific which is significantly impacted by the transport of material from Asia and North America, the mean nitrate concentrations are about three times higher, 0.29 and 0.36 g m–3 at Midway and Oahu, respectively. The major sources of the nitrate over the tropical South Pacific are still very uncertain. A very significant correlation between the nitrate concentrations at American Samoa and the concentrations of 210Pb suggests that transport from continental sources might be important. This continental source could be lightning, which occurs most frequently over the tropical continents. A near-zero correlation with 7Be indicates that the stratosphere and upper troposphere are probably not the major sources. A significant biogenic source would be consistent with the higher mean nitrate concentrations, 0.16 to 0.17 g m–3, found over the equatorial Pacific at Fanning Island (3°55N, 159°20W) and Nauru (0°32S, 166°57E). The lack of correlation between nitrate and nss sulfate at American Samoa does not necessarily preclude an important role for marine biogenic sources. 相似文献