首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the usefulness of acquiring multicomponent GPR data to detect cracks in a historical building, and to monitor their dynamics, caused by a slowly and irregularly moving landslide. We used 2 GHz bipolar antennas in a configuration that allows for acquiring the in-line and cross-line electric field components with x- and y-directed antennas. The 2 × 2 data matrix was collected on a floor in the building along transects at four different times over a period of one year. The data were processed with a standard 2D scalar algorithm and with the latest 3D single component vector algorithm that corrects for antenna effects. We have implemented a 3D single component vector migration algorithm in a 2.5D sense to produce 2D slices of a 3D vector migration image by applying the algorithm on line data. This procedure allows for migrating single component line data taking into account all vector effects as well as three-dimensional wave propagation. We show that the 2.5D vector migration images have a much better in-line resolution than the migration images obtained by applying a standard 2D scalar migration algorithm.The GPR profiles agree with the a priori information about the structure of the floor. In particular, we detected two different types of anomalies, only a few of which can be due to utilities and to metallic mesh. Some shallower anomalies agree well with the cracks visible on the tiling, suggesting that some cracks can be directly detected using GPR. Visually there were no changes in the cracks on the floor and no clear changes in the GPR data could be attributed to possible subsurface changes in the cracks. The variations in the GPR images seemed primarily caused by changes in the coupling of the antennas with the investigated structure (floor) depending on the season when the measurements were made. For this reason the monitoring aspect of the survey is not successful.  相似文献   

2.
As competition for increasingly scarce ground water resources grows, many decision makers may come to rely upon rigorous multiobjective techniques to help identify appropriate and defensible policies, particularly when disparate stakeholder groups are involved. In this study, decision analysis was conducted on a public water supply wellfield to balance water supply needs with well vulnerability to contamination from a nearby ground water contaminant plume. With few alternative water sources, decision makers must balance the conflicting objectives of maximizing water supply volume from noncontaminated wells while minimizing their vulnerability to contamination from the plume. Artificial neural networks (ANNs) were developed with simulation data from a numerical ground water flow model developed for the study area. The ANN-derived state transition equations were embedded into a multiobjective optimization model, from which the Pareto frontier or trade-off curve between water supply and wellfield vulnerability was identified. Relative preference values and power factors were assigned to the three stakeholders, namely the company whose waste contaminated the aquifer, the community supplied by the wells, and the water utility company that owns and operates the wells. A compromise pumping policy that effectively balances the two conflicting objectives in accordance with the preferences of the three stakeholder groups was then identified using various distance-based methods.  相似文献   

3.
Ground penetrating radar (GPR) survey was conducted in the Wushanting mud volcano field (Yanchao, Kaohsiung) using a 500 MHz antennae, which allowed high-resolution imaging of subsurface structures. Seven GPR reflection characteristics are recognized. Sigmoid GPR reflection patterns resulted from a recent mud lobe deposited above an underlying older mud lobe front. Contorted GPR facies resulted from recent mud flow which encountered obstacles. Subparallel reflections resulted from mud volcano deposits of limited flowability, low velocity and gentle gradient. Hummocky reflection patterns are formed by interfingering of recent mud lobes building onto low land. Disrupted GPR facies were due to lateral breaks of continuity from mud cracks, which, according to field observation, can provide channels for erosion and form deeper erosion gullies. GPR time slices of different depths are rendered as a three-dimensional model. Approximately orbicular GPR reflection characteristics can indicate arcuate stacked mud lobe fronts of different periods. Some depositional models to explain GPR reflection characteristics can be founded upon observations of recent sedimentary phenomena. The models of this study may be applied to paleoenvironments and the depositional evolution of mud volcanoes in similar geological settings.  相似文献   

4.
A recent approach relates the shift of the frequency peak of the Ground Penetrating Radar (GPR) spectrum with the increasing of the moisture content in the soil. The weakness characterizing this approach is represented by the needs of high resolution signals, whereas GPR spectra are affected by low resolution. The novelty introduced by this work is twofold. First, we evidence that clay content information is present in the location where the maximum amplitude of the GPR spectra occurs. Then, we propose three super resolution methods, namely parabolic, triangular, and sinc-based interpolators, to further refine the location of the frequency peak. In fact, it is really important to be able to find this location quite precisely, to obtain accurate estimates of clay content. We show that the peak location can be found best through sinc-interpolation in the frequency domain of the measured data. Our experimental results confirm the effectiveness of the proposed approach to resolve a frequency shift in the GPR spectrum, even for a small amount of clay.  相似文献   

5.
Zusammenfassung 1) Es werden Multipollösungen der skalaren Wellengleichung 2 f/t 2 – c2 div gradf=0 betrachtet. Einerseits kann man solche Lösungen direkt durch Kugelfunktionenn-ter Ordnung ausdrücken, anderseits aus der Einpollösungf=1/p F(t–p/c) durch Differentiation nachn Richtungen erhalten. Es wird der Zusammenhang zwischen den Ergebnissen der beiden Verfahren gezeigt. — 2) Für die Energiedichte und den Energiefluss durch Kugelflächen bei kleinen elastischen Verschiebungen werden Ausdrücke in Kugelkoordinaten angegeben. — 3) Für die Wellengleichung grad div –b 2 rot rot werden rotationsfreie Multipollösungen angegeben und Ausdrücke für Energiedichte und Energiefluss hergeleitet. — 4) Das gleiche wird für divergenzfreie Multipollösungen durchgeführt. — 5) Es werden Multipole betrachtet, die weder rotationsfrei noch divergenzfrei sind. Als Spezialfälle werden Multipole mit zeitlich begrenzter und solche mit periodischer Erregung gezeigt, ferner Lösungen der Wellengleichung, die sowohl rotationsfrei wie divergenzfrei sind. — 6) Es wird gezeigt, wie man die elastischen Wellen, die im Sinne vonStokes von einem Herdgebiet endlicher Ausdehnung ausgehen, näherungsweise durch elastische Multipole darstellen kann. — 7) Es wird angedeutet, wie man durch Messung von Komponenten von oder u.s.w. in Punkten im Innern des Mediums die Erregung und Energie von elastischen Multipolen bestimmen kann. Ferner wird auf den Fall hingewiesen, wo ein rotationsfreier Einpol sich im Innern eines Halbraumes befindet und die Messungen an seiner Oberfläche ausgeführt werden.
Summary (On foci of elastic waves in isotropic homogeneous media) — 1) Multiplets as solutions of the scalar wave equation 2 f/t 2 – c2 div gradf=0 are considered. Such solutions can be obtained either directly by aid of spherical harmonics of ordern, or by differentiating the single polef=1/p F(t–p/c) with respect ton directions. The relations between the results of those two procedures are shown. — 2) In the case of small elastic displacements , the density of energy and the flow of energy through spherical surfaces are expressed by spherical coordinates. — 3) Multiplets which satisfy the equation of motion =a 2 grad div b 2 curl curl and the equation curl = 0 are given, and expressions for the density and flow of energy are found. — 4) The same is done with multiplets satisfying the equation of motion and the equation div = 0. — 5) General multiplets which satisfy the equation of motion are treated. As special cases, multiplets with excitation of finite length and multiplets with periodic excitation are considered, furthermore solutions of the equation of motion and of the equations curl = 0 and div = 0 are given. — 6) It is shown how elastic waves whose origin is a region of finite extension in the sense given byStokes, can be approximated by elastic multiplets. — 7) Some indications are given on the problem of how to find the functions of excitation and the energy of an elastic multiplet by measuring components of or etc., at points in the interior of the medium. The same problem is considered in the case of the single elastic pole. = grad 1/p F (t–p/a), if the measurements are made at the surface of an elastic half space.
  相似文献   

6.
Within the road pavement acceptance tests, destructive as well as non-destructive tests of individual road layers are performed to verify the standard requirements. The article describes a method for providing quick, effective and sufficiently accurate measurements of both dowel and tie bar positions in concrete pavements, using a two-channel ground penetrating radar (GPR). Measurements were carried out in laboratory and in-situ conditions. A special hand cart for field measurements, set for the testing requirements, was designed. It was verified that following the correct measuring and assessment method, it is possible to reach accuracy of determining the in-built rebar up to 1 cm in vertical direction and up to 1.5 cm per 11.5 m of measured length in horizontal direction. In the in-situ tests, GPR identification of possible anomalies due to the phase of concrete pavement laying was presented. In the conclusion, a measurement report is mentioned. The standard requirements for the position of dowels and tie bars cover maximum possible deviation of the rebar position from the project documentation in vertical and horizontal direction, maximum deflection of rebar ends to each other, and maximum translation of rebar in the direction of its longitudinal axis.  相似文献   

7.
The Marine Strategy Directive requires European Union Member States to develop science-based marine strategies with the involvement of stakeholders, in order that Europe’s marine environment reaches ‘good environmental status’ by 2021. The scientific requirements of marine strategies are clearly defined within the Directive, however, the requirements related to stakeholder involvement are not. This paper presents a critical analysis of the provisions for stakeholder involvement with in the Marine Strategy Directive. In particular, the paper is focused upon the definition of stakeholder, the sequencing of involvement, and the form and purpose of involvement. The critique is set within an evaluative framework that considers policy-making to be a social process, rather than a purely scientific one. It is concluded that the Marine Strategy Directive lacks coherency with respect to stakeholder involvement which may perpetuate the traditional tension between marine science and policy. This in turn may compromise the ability of the Directive to protect Europe’s marine environment.  相似文献   

8.
In this paper we present thermal characteristics of coal fires as measured during simulated fires under an experimental setting in Germany in July 2002. It is thus a continuation of the previously published paper “Thermal surface characteristics of coal fire 1: Results of in-situ measurement”, in which we presented temperature measurements of real subsurface coal fires in China [Zhang, J., Kuenzer, C., accepted for publication. Thermal Surface Characteristics of Coal Fires 1: Results of in-situ measurements. Accepted for publication at Journal of Applied Geophysics.]. The focus is on simulated coal fires, which are less complex in nature than fires under natural conditions. In the present study we simulated all the influences usually occurring under natural conditions in a controllable manner (uniform background material of known thermal properties, known ventilation pathways, homogeneous coal substrate), creating two artificial outdoor coal fires under simplified settings. One surface coal fire and one subsurface coal fire were observed over the course of 2 days. The set up of the fires allowed for measurements not always feasible under “real” in-situ conditions: thus compared to the in-situ investigations presented in paper one we could retrieve numerous temperature measurements inside of the fires. Single temperature measurements, diurnal profiles and airborne thermal surveying present the typical temperature patterns of a small surface-and a subsurface fire under undisturbed conditions (easily accessible terrain, 24 hour measurements period, homogeneous materials). We found that the outside air temperature does not influence the fire's surface temperature (up to 900 °C), while fire centre temperatures of up to 1200 °C strongly correlate with surface temperatures of the fire. The fires could heat their surrounding up to a distance of 4.5 m. However, thermal anomalies on the background surface only persist as long as the fire is burning and disappear very fast if the heat source is removed. Furthermore, heat outside of the fires is transported mainly by convection and not by radiation. In spatial thermal line scanner data the diurnal thermal patterns of the coal fire are clearly represented. Our experiments during that data collection also visualize the thermal anomaly differences between covered (underground) and uncovered (surface) coal fires. The latter could not be observed in-situ in a real coal fire area. Sub-surface coal fires express a much weaker signal than open surface fires and contrast only by few degrees against the background. In airborne thermal imaging scanner data the fires are also well represented. Here we could show that the mid-infrared domain (3.8 μm) is more suitable to pick up very hot anomalies, compared to the common thermal (8.8 μm) domain. Our results help to understand coal fires and their thermal patterns as well as the limitations occurring during their analysis. We believe that the results presented here can practicably help for the planning of coal fire thermal mapping campaigns — including remote sensing methods and the thermal data can be included into numerical coal fire modelling as initial or boundary conditions.  相似文献   

9.
A high resolution geophysical survey was carried out on the Pont De Coq, a medieval stone arch bridge located in Normandy (France) in 2011 and 2012. Two complementary methods are used: Electrical Resistivity Tomography (ERT) and Ground PenetratingRadar (GPR). They allow to evaluate the structural state of the bridge and to characterize the subsurface around and beneath the bridge. An excellent correlation is obtained between the geophysical methods and the geological data obtained around the bridge. In order to improve the restitution of the geophysical data, an advanced photogrammetric method is performed, providing a high resolution 3D Digital Terrain Model (DTM) of the Pont de Coq. The advanced photogrammetry enhances the presentation of the GPR and ERT data. This approach is an easy-to-use, rapid and cost-effective tool for stakeholders. Finally, it is a promising and original method for improved interpretations of future geophysical surveys.  相似文献   

10.
Ground-penetrating radar (GPR) is an effective tool for imaging the spatial distribution of water content. An artificial groundwater recharge test was conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor the infiltration process in the vadose zone. Since electromagnetic wave velocities in the vadose zone are largely controlled by variations in water content, an increase in traveltime is interpreted as an increase in saturation. In the test zone, the infiltrated water penetrated downward with an average velocity of about 2.7 m/h. A finite-difference time-domain method using two-dimensional cylindrical coordinates is applied to simulate radargrams associated with the advancing wetting front and to quantify the effects of critical refraction. Standard zero-offset profiling for which all first-arrivals are assumed to be direct waves results in an underestimation of water content in the transition zone above the wetting front. As a result, correct velocity analysis requires identification of first-arriving critically refracted waves from the traveltime profile to accurately determine a water content profile.  相似文献   

11.
12.
We apply a forward-modeling approach to high-quality arrival time data from 23 deep earthquakes greater than 400 km depth to investigate the detailed structure of the subducting Pacific slab beneath the Japan Sea. Our results show that a finger-like anomaly exists within the subducting Pacific slab below 400 km depth, which has a P-wave velocity 5% lower than the surrounding slab velocity (or 3% lower than that of the normal mantle), suggesting the existence of a metastable olivine wedge (MOW) in the slab. The MOW top and bottom depths are 400 and 560 km, respectively. The MOW is estimated to be about 50 km wide at 400 km depth and close to the slab upper boundary. At 560 km depth the MOW is located at about 25 km below the slab upper boundary. Most of the deep earthquakes are located in the MOW. Our results favor transformational faulting as the mechanism for deep earthquakes.  相似文献   

13.
Basaltic rocks with low K, U and Th contents dominate the entire Volcanic Complex of the Doupovské hory Mts. Significant potassium anomaly exceeding 1.5 atomic wt.% of potassium over an area of 4 × 8 km and 2 atomic wt.% of potassium over an area of 2 × 6 km was defined by airborne gamma-ray spectrometry above the central part of the Doupovské hory Volcanic Complex. The following detailed field study, supported by field and laboratory gamma-spectrometry measurements and geochemical analyses of rock samples, resulted in discovery of a swarm of potassium-rich trachytic dykes. The existence of such highly-differentiated rocks in the volcanic complex was unknown till present. These dykes are commonly less than 1 m wide, but their potassium content varies between 4 and 8 atomic wt.%. Owing to this high-K composition and relative abundance of dykes, the dyke rocks significantly modify the regional pattern of gamma-spectrometry data. The potassium anomaly cannot be explained by the presence of Flurbühl intrusive body dominated by ijolites and essexites, as all these rocks are poor in K, with potassium typically not exceeding 1.5 wt.%. On the other hand, much more extensive intermediate trachybasaltic lavas with K content varying within the range 1.8–3 wt.% cause only minor or undetectable anomalies.  相似文献   

14.
In this work, the design and construction of a special trailer designed to evaluate traffic infrastructure with GPR is presented. This trailer is adapted to the requirements of a multipurpose GPR system and different ground-coupled antennas to allow for multi-frequency surveys of roads without obstructing traffic. The prototype presented in this work is completely non-metallic, allowing massive data acquisition at a cruising speed up to 80 km/h. It provides the possibility of carrying two bowtie antennas simultaneously with a simple mechanism that allows for changing the elevation from the roadbed to the antenna/s for adequate and safe operation. The work includes the results of tests conducted to evaluate the performance of the system under different field work conditions.  相似文献   

15.
In order to evaluate the risk associated by an earthflow to abruptly evolve into a torrential flow, the knowledge of its internal structure is necessary. Geotechnical methods are important to reach this goal. However, because of the rough topography associated with earthflows, their surface heterogeneities, and the spatial variations of the thickness of the potentially moving mass, non-intrusive geophysical methods offer a very useful tool that complements traditional geotechnical methods. We report the results of a comprehensive study covering a 150 m by 200 m area of the Super Sauze earthflow. This earthflow developed in black marls in the southern French Alps. Shallow electrical conductivity investigations, derived using low frequency domain electromagnetics, maps hidden gullies and crests and lateral variations of the clay and the water content within the first 5 m below the ground surface. Electrical resistivity tomography allows to extrapolate this information down to 10 m below the ground surface along selected transects. The vertical structure of the earthflow, down to the substratum, is defined precisely thanks to joint inversion of DC and TDEM vertical soundings along one profile: the flowing upper layer and the position of the substratum are clearly evidenced. Combining this geophysical datasets with geotechnical tests and drill holes, we provide an estimate of both the location and the volume of the potentially most dangerous areas of the earthflow.  相似文献   

16.
17.
Ground‐penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile lightweight set‐up, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our set‐up was optimized for efficient measurements and consisted of a multioffset radar with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements at intervals of 2 to 7 days were taken during the 2014/2015 winter season along 10 profiles of 50 to 200 m length within two valleys located in the eastern Swiss Alps. Resulting GPR‐based data of snow depth, density, and water equivalent, as well as their respective change over time, were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved. Corresponding root‐mean‐square error (RMSE) values amounted to 4.2 cm for snow depth, 17 mm for snow water equivalent, and 22 kg/m3 for snow density, with similar RMSE values for corresponding differential data. With this performance, the presented radar set‐up has the potential to provide exciting new and extensive datasets to validate snowmelt models or to complement lidar‐based snow surveys.  相似文献   

18.
Hazardous sinkholes started to appear in alluvial fans and unconsolidated sediments along the western Dead Sea coast in 1990. Since then hundreds of sinkholes have appeared from north to south along the shoreline. The Electrical Resistivity Tomography (ERT) method was used to achieve a better understanding of the subsurface geoelectric structure at the sinkhole development sites, taking into account that electric parameters (such as resistivity or conductivity) are very sensitive to formation properties and their variations in time. Fifteen image lines were surveyed at the Ein Gedi area during a period of active sinkhole development (in 2001–2002) over an area of 300 × 550 m2. Resistivity cross-sections and maps were constructed from 2-D linear surveys. The process of sinkhole formation in the surveyed area is located in a strip 50–70 m wide and 300–500 m long, extending approximately in a north–south direction. The sinkholes are arranged along a tortuous line within this strip. On resistivity maps and sections this U-shaped zone appears as an alternation of high resistivity anomalies of 350–1000 Ωm (at sinkhole group locations) with narrow background resistivity zones of 50–100 Ωm. The large size of resistivity anomalies (250 × 300 m2), which are considerably greater than those of the sinkholes, form one of the features of the sinkhole sites in the Ein Gedi area. The anomalies continue down to the water table or even deeper (maximum of 25–35 m depth). A low resistivity layer of 1–8 Ωm underlies them. The combined analysis of the image results and other geophysical data shows that high resistivity anomalies are associated with the decompaction of the soil mass at the sinkhole development sites and surrounding areas. Recent studies have shown that sinkholes in the Ein Gedi area are developing along the salt western edge located at a depth of 50 m. The subsurface high resistivity anomaly conforms to the sinkhole line (and salt boundary). They are presumably located above the great dissolution caverns at the salt edge. The heterogeneity of the resistivity structure within the high resistivity anomaly (seen in both lateral and vertical planes) confirms that a disintegration of internal formation structure takes place. Away from the sinkhole sites the subsurface resistivity distribution is homogeneous.  相似文献   

19.
The implementation of the European Water Framework Directive (WFD) will address land use issues in river catchments in order to reduce diffuse pollution and work towards the aim of achieving good ecological status, or good ecological potential in surface water bodies. The WFD also requires the active involvement of all interested parties in developing the best approach to achieve its objectives. The paper demonstrates how scenario analysis can be applied to investigate the impacts of land use changes and how stakeholder interviews can be used to evaluate the results of the scenarios.The study was carried out in the Havel Basin in the northeast of Germany. ‘Landscape-ecological spatial units’ were derived from similar characteristics of soil and groundwater conditions, ground relief and inundation to enable spatial allocation of potential land use and link different scales when describing possible changes in land use. As a first step, in three sub-catchments of the Havel River (distinguished by different physical characteristics) detailed surveys were carried out to investigate the various interests of the stakeholders. The interviews were used to identify the key problems of each area with respect to water quality and quantity and facilitated stakeholder engagement with the catchment planning issues in the Havel River Basin. The information from the stakeholder interviews was used to determine the initial conditions for the land use scenarios which were developed to demonstrate possible changes to land use for achieving better water quality. The land use scenarios also were required as an input into the hydrological modelling of their effects on water quality and to calculate their socio-economic effects. In a second survey, the results of the scenarios and the hydrological modelling were presented to the stakeholders. The consultation process identified the priorities of the stakeholders which could then be taken into account when developing management options.  相似文献   

20.
Collapsed calderas are the structural surface expression of the largest volcanic eruptions on Earth and may reach diameters of tens of kilometres while erupting volumes larger than 1000 km3. Remnants of collapse calderas can be found along the South American volcanic arc and are thought to be inactive. However, this study shows that systems of such dimension may become active in a relatively short period of time without attracting much attention. Using satellite-based InSAR data, a 45 km wide elongated area of ground deformation was observed in the Lazufre volcanic region (Chile), where no deformation was detected 10 years ago. The deformation signal shows an uplift of up to ~ 3 cm yr− 1 during 2003–2006, affecting an area of about 1100 km2, comparable in size to super-volcanoes such as Yellowstone or Long Valley. This deformation signal can be explained by an inflating magma body at about 10 km depth, expanding and propagating laterally at a velocity of up to 4 km per year. Although it is not clear whether this intrusion will lead to an eruption, its dimensions and the rapid deformation rate insinuate that a potentially large volcanic system is forming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号