首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the study of solar magnetic fields based on the photospheric vector magnetograms of solar active regions which were obtained at Huairou Solar Observing Station near Beijing in the period of 22nd and 23th solar cycles. The measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic field. After the analysis on the formation process of delta configuration in some super active regions based on the photospheric vector magnetogram observations, some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, proposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and the relationship with magnetic shear in some delta active regions completely. (3) The proposition is that the large-scale delta active regions are formed from contribution by highly sheared non-potential magnetic flux bundles generated in the subatmosphere. We present some results of a study of the magnetic helicity. We also compare these results with other data sets obtained by magnetographs (or Stokes polarimeters) at different observatories, and analyze the basic chirality of the magnetic field in the solar atmosphere.  相似文献   

2.
3.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

4.
TheRelationshipAmongMagneticfields,DopplerVelocityFieldsandFlaresAietal.( 1 989)andLietal.( 1 996 )haveanalyzedtherelationshipbetweenphoto -sphericmagneticfieldsandHβchromosphericvelocityfieldswithinsitesofflaresinsomeactiveregions,especiallyevolvingfeaturesof…  相似文献   

5.
介绍全日面太阳光学和磁场望远镜的自动跟踪与导行方法。本系统采用光栅钢带码盘作位置检测元件,实时计算太阳站心位置,构成高精度的位置环跟踪系统,并用视频CCD和胡氏导行光路进行太阳导行,提高了系统的长时间跟踪精度。最后经实测,分析得出该跟踪导行系统完全达到预期指标。  相似文献   

6.
Mordvinov  A.V.  Salakhutdinova  I.I.  Plyusnina  L.A.  Makarenko  N.G.  Karimova  L.M. 《Solar physics》2002,211(1-2):241-253
We investigate the topological properties and evolution of background magnetic fields on synoptic maps from Wilcox Solar Observatory using mathematical morphology methods in terms of the Minkowski functionals. The total length of the neutral line, the total areas occupied by positive and negative polarities, and the Euler characteristics of background magnetic fields vary over an eleven-year cycle. Changes in the length of the neutral line that separates the polarities of the background magnetic field correlate well with flare activity. A time–longitude analysis of solar flare activity revealed a complicated organization and rotation of the entire flare ensemble. On the time–longitude diagram, flare activity is organized into the patterns which follow the rearrangements in background magnetic field and exhibit coexisting and alternating modes of rigid rotation. The character of rotation of the entire flare ensemble is similar to the rotation of background magnetic fields. The emergence of background magnetic fields and changes in their topology and rotation are often accompanied by enhancements in flare activity. A comparative analysis of the topological changes in background magnetic fields and flare activity reveals their causal relation.  相似文献   

7.
Varsik  J.R.  Wilson  P.R.  Li  Y. 《Solar physics》1999,184(2):223-237
We present high-resolution studies of the solar polar magnetic fields near sunspot maximum in 1989 and towards sunspot minimum in 1995. We show that, in 1989, the polar latitudes were covered by several unipolar regions of both polarities. In 1995, however, after the polar field reversal was complete, each pole exhibited only one dominant polarity region.Each unipolar region contains magnetic knots of both polarities but the number count of the knots of the dominant polarity exceeds that of the opposite polarity by a ratio of order 4:1, and it is rare to find opposite polarity pairs, i.e., magnetic bipoles.These knots have lifetimes greater than 7 hours but less than 24 hours. We interpret the longitudinal displacement of the knots over a 7-hour period as a measure of the local rotation rate. This rotation rate is found to be generally consistent with Snodgrass' (1983) magnetic rotation law.In an attempt to obtain some insight into the operation of the solar dynamo, sketches of postulated subsurface field configurations corresponding to the observed surface fields at these two epochs of the solar cycle are presented.  相似文献   

8.
Goode  Philip R. 《Solar physics》2001,200(1-2):343-352
In recent years, more and more precise measurements have been made of solar oscillation frequencies and line widths. From space, the Solar and Heliospheric Observatory/Michelson Doppler Imager (MDI) data has led to much progress. From the ground, networks, like Global Oscillation Network Group (GONG), Taiwanese Oscillation Network (TON), and Birmingham Solar Oscillations Network (BiSON) have also led to much progress. The sharpened and enriched oscillation spectrum of data have been critically complemented by advances in the treatments of the opacities and the equation of state. All of this has led to a significantly more precise probing of the solar core. Here we discuss the progress made and suggest how the core may be better probed with seismic data on-hand. In particular, we review our knowledge of the rotation and structure of the core. We further argue that much may be learned about the core by exploiting the line width data from the aforementioned sources. Line-width data can be used to place sharper constraints on core properties, like the degree to which the Sun rotates on a single axis and the upper limit on magnetic fields that may be buried in the core.  相似文献   

9.
The rotation characteristics of large-scale (global) magnetic fields (GMF) and their relation to the activity of local fields (LMF) are studied over a long time interval (1915–1996). The main results are as follows. The GMF rotation rates and LMF activity vary in anticorrelation. Both variations have similar periods (11 years and a quasi-secular period of about 55–60 years), but are shifted relative to each other by half an 11-year cycle. Therefore, (1) the GMF rotation rate increases at the minimum of the 11-year cycle of LMF activity. (2) The GMF rotation rate is faster in the less active hemisphere. (3) The GMF rotation period slows down at the maximum of the secular LMF activity (cycles 18 and 19).  相似文献   

10.
The effect of large-scale magnetic fields on total solar irradiance (TSI) was studied both in time–frequency and in time–longitude aspects. A continuous wavelet analysis revealed that the energy of thermomagnetic disturbances due to sunspots and faculae cascades into the magnetic network and facular macrostructure. A numerical technique of time–longitude analysis was developed to study the fine structure of temporal changes in the TSI caused by longitudinal brightness inhomogeneities and rotation of the Sun. The analysis facilitates mapping large-scale thermal inhomogeneities of the Sun and reveals patterns of radiative excesses and deficits relative to the undisturbed solar photosphere. These patterns are organized into 2- and 4-sector structures that exhibit the effects of both activity complexes and magnetically active longitudes. Large-scale patterns with radiative excess display a facular macrostructure and bright patterns in the magnetic network caused by the dissipation of large-scale thermomagnetic disturbances. Similar global-scale temperature patterns were found in the upper solar atmosphere. These temperature patterns are also causally related to long-lived magnetic fields of the Sun. During activity cycles 21–23 the patterns with radiative excess tend to be concentrated around the active longitudes which are centered at about 60° and 230° in the Carrington system.  相似文献   

11.
The rotation of sunspot penumbrae has been investigated on the longitudinal magnetic and velocity fields, observed in the photospheric line Fe i λ5253 Å of five lone sunspots. We reconstructed the entire vectors of both fields from their line-of-sight components. All three components of both vectors revealed that the rotation of the sunspots was, in fact, a torsional oscillation. All components of each sunspot had the same rotational period. The penumbrae oscillation periods were distributed in the range from 3.4 days to 7.7 days. The phase of the velocity azimuthal component oscillation was ahead of the phases of all other components of both vectors. If the penumbra plasma density had been equal to the photospheric plasma density (10?7 g cm?3) then the oscillation magnetic energy of the components exceeded their kinetic energy approximately by a factor of 10–200. The obtained results led to the conclusion that these oscillations were constrained.  相似文献   

12.
With 1353 vector magnetograms observed at Huairou Solar Observing Station (HSOS), a statistical analysis is made on the relationship among solar flares, magnetic gradient, and magnetic shear. The results suggest that flare productivity has positive correlations with the gradient and the shear, which can be well fitted by the Boltzmann sigmoidal function. In the vicinity of neutral lines, high gradient and strong shear are roughly coincident in time but barely in position. In addition, flare productivity is more sensitive to the length of neutral lines with strong gradient and shear (L gs) than independently with strong gradient (L g) or strong shear (L s), which means that L gs can be a better parameter for solar flare forecasting models. Finally, an algorithm to evaluate projection effects on the statistical results is proposed.  相似文献   

13.
太阳耀斑的光球磁场和色球速度场观测   总被引:1,自引:0,他引:1  
太阳磁场望远镜安装了CCD图象接收处理系统后,得到许多精细结构的两维、实时磁场、速度场图。本文对其中观测的两群黑子,做耀斑磁场、速度场分析。在此基础上指出,异极性磁区相互渗透是普遍存在的,耀斑亮核均发生在异极性磁区相互挤压的前锋。这就为挤压无力场耀斑模式提供了有力的证据。同时发现,在耀斑发生的区域,流场的方向是向下的。  相似文献   

14.
We present a straightforward comparison of model calculations for the α-effect, helicities, and magnetic field line twist in the solar convection zone with magnetic field observations at atmospheric levels. The model calculations are carried out in a mixing-length approximation for the turbulence with a profile of the solar internal rotation rate obtained from helioseismic inversions. The magnetic field data consist of photospheric vector magnetograms of 422 active regions for which spatially-averaged values of the force-free twist parameter and of the current helicity density are calculated, which are then used to determine latitudinal profiles of these quantities. The comparison of the model calculations with the observations suggests that the observed twist and helicity are generated in the bulk of the convection zone, rather than in a layer close to the bottom. This supports two-layer dynamo models where the large-scale toroidal field is generated by differential rotation in a thin layer at the bottom while the α-effect is operating in the bulk of the convection zone. Our previous observational finding was that the moduli of the twist factor and of the current helicity density increase rather steeply from zero at the equator towards higher latitudes and attain a certain saturation at about 12 – 15. In our dynamo model with algebraic nonlinearity, the increase continues, however, to higher latitudes and is more gradual. This could be due to the neglect of the coupling between small-scale and large-scale current and magnetic helicities and of the latitudinal drift of the activity belts in the model.  相似文献   

15.
The distribution of relative position angles between the integrated intrinsic polarization (perpendicular to the direction of the intrinsic magnetic field) and the major axis of an extragalactic radio source were studied for different types of radio sources. Data for 280 extragalactic radio sources were used and it was found that there are large differences in the relative orientation of different types of radio sources. The directions of the intrinsic integrated magnetic fields correlate with the major radio axes of more elongated radio sources (K > 2.5, where K is the ratio of lengths of the major and minor axes of the radio images) and for radio sources of type FR II, whereas for less elongated objects (K < 2.5) and for radio sources of type FR I the magnetic fields do not correlate at all with the radio axes. An alternative mechanism for the formation of a radio galaxy from relativistic plasma ejected from the central part of an optical galaxy and moving in its large-scale, dipole magnetic field may be a theoretical basis for classification with respect to the elongation parameter K of the radio image.  相似文献   

16.
The amplitudes of solar oscillations measured in Doppler velocity are modulated by the presence of a strong photospheric magnetic field. Here we show that the amount of modulation cannot be predicted solely on the local photospheric magnetic field strength. Qualitatively, magnetic fields of similar strength have similar effects on the oscillations. Quantitatively, however, we find a neighborhood effect, so that the presence of a nearby sunspot affects oscillations in the area in its vicinity that has normal quiet-Sun magnetic field strength. Thus, different types of magnetic regions alter the oscillatory power to a varying degree, and the p-mode power within regions of similar magnetic field strength is more reduced if there is a sunspot present. The neighborhood effect falls off with distance from the sunspot. We also show that our measurements of the power modulation, in which we look at the effects on oscillations pixel by pixel, can be made consistent with results of amplitude modulation of modes as obtained from ring-diagram analysis of active regions, but only if the neighborhood effect on quiet-Sun regions is taken into account.  相似文献   

17.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   

18.
Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the precursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active-region’s magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca ii H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ≈ 8° toward the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ≈ 7°. This behavior of the field vector may provide a physical basis for future flare-forecasting efforts.  相似文献   

19.
We study magnetic power spectra of active and quiet regions by using Big Bear Solar Observatory and SOHO/MDI measurements of longitudinal magnetic fields. The MDI power spectra were corrected with Gaussian Modulation Transfer Function. We obtained reliable magnetic power spectra in the high wave numbers range, up to k=4.6 Mm−1, which corresponds to a spatial scale l=1.4 Mm. We find that the occurrence of the spectral discontinuity at high wave numbers, k≥3 Mm−1, largely depends on the spatial resolution of the data and it appears at progressively higher wave numbers as the resolution of the data improves. The spectral discontinuity in the raw spectra is located at wave numbers about 3 times smaller than wave numbers, corresponding to the resolution of the data, and about 1.5–2.0 times smaller in the case of the noise- and-resolution corrected spectra. The magnetic power spectra for active and quiet regions are different: active-region power spectra are described as ∼k −1.7, while in a quiet region the spectrum behaves as ∼k −1.3. We suggest that the difference can be due to small-scale dynamo action in the quiet-Sun photosphere. Our estimations show that the dynamo can generate more than 6% of the observed magnetic power.  相似文献   

20.
Thirteen synoptic maps of expansion rate of the coronal magnetic field (CMF; RBR) calculated by the so-called ‘potential model’ are constructed for 13 Carrington rotations from the maximum phase of solar activity cycle 22 through the maximum phase of cycle 23. Similar 13 synoptic maps of solar wind speed (SWS) estimated by interplanetary scintillation observations are constructed for the same 13 Carrington rotations as the ones for the RBR. The correlation diagrams between the RBR and the SWS are plotted with the data of these 13 synoptic maps. It is found that the correlation is negative and high in this time period. It is further found that the linear correlation is improved if the data are classified into two groups by the magnitude of radial component of photospheric magnetic field, |Bphor|; group 1, 0.0 G ≦ |Brpho| < 17.8 G and group 2, 17.8 G ≦ |Brpho|. There exists a strong negative correlation between the RBR and the SWS for the group 1 in contrast with a weak negative correlation for the group 2. Group 1 has a double peak in the density distribution of data points in the correlation diagram; a sharp peak for high-speed solar wind and a low peak for low-speed solar wind. These two peaks are located just on the axis of maximum variance of data points in the correlation diagram. This result suggests that the solar wind consists of two major components and both the high-speed and the low-speed winds emanating from weak photospheric magnetic regions are accelerated by the same mechanism in the course of solar activity cycle. It is also pointed out that the SWS can be estimated by the RBR of group 1 with an empirical formula obtained in this paper during the entire solar activity cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号