首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Long-period geomagnetic data can resolve large-scale 3-D mantle electrical conductivity heterogeneities which are indicators of physiochemical variations found in the Earth's dynamic mantle. A prerequisite for mapping such heterogeneity is the ability to model accurately electromagnetic induction in a heterogeneous sphere. A previously developed finite element method solution to the geomagnetic induction problem is validated against an analytic solution for a fully 3-D geometry: an off-axis spherical inclusion embedded in a uniform sphere. Geomagnetic induction is then modelled in a uniform spherical mantle overlain by a realistic distribution of oceanic and continental conductances. Our results indicate that the contrast in electrical conductivity between oceans and continents is not primarily responsible for the observed geographic variability of long-period geomagnetic data. In the absence of persistent high-wavenumber magnetospheric disturbances, this argues strongly for the existence of large-scale, high-contrast electrical conductivity heterogeneities in the mid-mantle. Lastly, for several periods the geomagnetic anomaly associated with a mid-mantle spherical inclusion is calculated. A high-contrast inclusion can be readily detected beneath the outer shell of oceans and continents. A comparison between observed and computed c responses suggests that the mid-mantle contains more than one order of magnitude of lateral variability in electrical conductivity, while the upper mantle contains at least two orders of magnitude of lateral variability in electrical conductivity.  相似文献   

8.
The mode-matching method is used to obtain an exact analytical solution to the problem of B -polarization induction in two adjacent thin half-sheets, lying on a conducting layer that is terminated by a perfect conductor at finite depth. These components of the model represent, respectively, the Earth's conducting surface layers, crust, and mantle. In dimensionless variables, the model has three independent parameters, these being the two thin-sheet conductances and the layer thickness. The mode-matching solution obtained in this paper is shown to be identical lo that derived via the Wiener-Hopf method in a companion paper (Dawson 1996), and so provides additional verification of that solution. As was shown in the companion paper, the solution for the present model contains, as special limiting cases, those for three models considered earlier by various authors. The second part of the present paper addresses the solutions for the electric fields in the non-conducting half-space above the conductors, which represents the atmosphere. In the final part, sample numerical calculations are presented to illustrate the solution.  相似文献   

9.
10.
11.
12.
The conductivity structure of the Earth's mantle was estimated using the induction method down to 2100  km depth for the Europe–Asia region. For this purpose, the responses obtained at seven geomagnetic observatories (IRT, KIV, MOS, NVS, HLP, WIT and NGK) were analysed, together with reliable published results for 11  yr variations. 1-D spherical modelling has shown that, beneath the mid-mantle conductive layer (600–800  km), the conductivity increases slowly from about 1  S  m−1 at 1000  km depth to 10  S  m−1 at 1900  km, while further down (1900–2100  km) this increase is faster. Published models of the lower mantle conductivity obtained using the secular, 30–60  yr variations were also considered, in order to estimate the conductivity at depths down to the core. The new regional model of the lower mantle conductivity does not contradict most modern geoelectrical sounding results. This model supports the idea that the mantle base, situated below 2100  km depth, has a very high conductivity.  相似文献   

13.
14.
15.
16.
17.
18.
The C -response connects the magnetic vertical component and the horizontal gradient of the horizontal components of electromagnetic variations and forms the basis for deriving the conductivitydepth profile of the Earth. Time-series of daily mean values at 42 observatories typically with 50 years of data are used to estimate C -responses for periods between 1 month and 1  yr. The Z : Y method is applied, which means that the vertical component is taken locally whereas the horizontal components are used globally by expansion in a series of spherical harmonics.
In combination with results from previous analyses, the method yields consistent results for European observatories in the entire period range from a few hours to 1  yr, corresponding to penetration depths between 300 and 1800  km.
1-D conductivity models derived from these results show an increase in conductivity with depth z to about 2  S  m-1 at z =800  km, and almost constant conductivity between z =800 and z =2000  km with values of 310  S  m-1, in good agreement with laboratory measurements of mantle material. Below 2000  km the conductivity is poorly resolved. However, the best-fitting models indicate a further increase in conductivity to values between 50 and 150  S  m-1.  相似文献   

19.
Climate change is a global phenomenon but is modified by regional and local environmental conditions. Moreover, climate change exhibits remarkable cyclical oscillations and disturbances, which often mask and distort the long-term trends of climate change we would like to identify. Inspired by recent advancements in data mining, we experimented with empirical mode decomposition (EMD) technique to extract long-term change trends from climate data. We applied GIS elevation model to construct 3D EMD trend surface to visualize spatial variations of climate change over regions and biomes. We then computed various time-series similarity measures and plot them to examine spatial patterns across meteorological stations. We conducted a case study in Inner Mongolia based on daily records of precipitation and temperature at 45 meteorological stations from 1959 to 2010. The EMD curves effectively illustrated the long-term trends of climate change. The EMD 3D surfaces revealed regional variations of climate change, while the EMD similarity plots disclosed cross-station deviations. In brief, the change trends of temperature were significantly different from those of precipitation. Noticeable regional patterns and local disturbances of the changes in both temperature and precipitation were identified. The trends of change were modified by regional and local topographies and land covers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号