首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling of long-wavelength gravity anomaly is crucial for bathymetry inversion with a gravity-geologic method. We propose a new method, named as iGGM, to approximate the long-wavelength gravity anomalies by using a finite element method based on an adaptive triangular mesh which is constructed by uneven control points. The mesh size is suitably controlled to ensure that there are several control points in each grid. By using iGGM, the bathymetry in the South China Sea (Test Area #1: 112°E–119°E, 12°N–20°N) and East China Sea (Test Area #2: 125°E–130°E, 25°N–30°N) is estimated. The performance of the method was evaluated by comparing the predictions with Earth topographical database 1 (ETOPO1) model and shipborne depths in the test points. Results show that the depths derived by iGGM have a strong correlation with the shipborne depths. In the test points, the mean values of their differences are smaller than 10 m. The standard deviations of their differences are smaller than 120 m and their correlation is stronger than 0.98. Meanwhile, the results provided by the iGGM model are comparable with that obtained by the ETOPO1 model, e.g., the differences between iGGM and ETOPO1 models in test points for Test Areas 1 and 2 are 116 and 70 m in standard deviation, respectively.  相似文献   

2.
以多波束精确的水深数据为参照源,采用原始回波时间对多波束测深数据与其同源声纳数据进行匹配,从而获得高精度和高分辨率的海底影像数据,并避免了传统声纳图像处理过程中斜距改正所带来的几何形变。匹配结果采用光照图输出,并与三维水深图、原始声纳图像和CARIS处理后的声纳图像进行比较分析。该方法有效地提高了多波束数据的利用率,增强了对海底地形的探测分辨率。  相似文献   

3.
Deep towed side-scan sonar vehicles such as TOBI acquire high quality imagery of the seafloor with very high spatial resolution but poor locational accuracy. Fusion of the side-scan sonar data with bathymetry data from an independent source is often desirable to reduce ambiguity in geological interpretations, to aid in slant-range correction and to enhance seafloor representation. The main obstacle to fusion is accurate registration of the two datasets.The application of hierarchical chamfer matching to the registration of TOBI side-scan sonar images and multi-beam swath bathymetry is described. This matches low level features such as edges in the TOBI image, with corresponding features in a synthetic TOBI image created by simulating the flight of the TOBI vehicle through the bathymetry. The method is completely automatic, relatively fast and robust, and much easier than manual registration. It allows accurate positioning of the TOBI vehicle, enhancing its usefulness as a research tool. The method is illustrated by automatic registration of TOBI and multi-beam bathymetry data from the Mid-Atlantic Ridge.  相似文献   

4.
RTK高精度定位技术在水深测量中的应用分析   总被引:2,自引:2,他引:0       下载免费PDF全文
对RTK高精度定位技术在水深测量中的原理进行介绍,并且通过工程实例,对RTK应用于无验潮水深测量的作业过程及精度分析详细讲解,针对于不同的误差来源采用相应的对策进行解决,对进一步利用RTK高精度定位技术在海洋工程勘察以及水深测量中具有重要意义。  相似文献   

5.
Locally enhanced turbulent mixing over rough bottom bathymetry is one of the candidates that might make up for the lack of diapycnal diffusivity in maintaining the global overturning circulation. In the present study, using a two-dimensional vertical numerical model for the Brazil Basin, we numerically examine the intensity and vertical structure of tide-induced mixing over multi-beam bottom bathymetry via the comparison with those over somewhat smoothed bottom bathymetry. Note that even this smoothed bottom bathymetry is finer than in commonly used datasets. In comparison to the response over the smoothed bottom bathymetry, energy dissipation rates are enhanced within a few hundred meters over the multi-beam bottom bathymetry. In spite of several limitations of the two-dimensional vertical numerical model, the magnitude and vertical distribution of the calculated dissipation rates agree well with those from microstructure measurements. We find that tidal interaction with fine-scale (≤2 km) bottom bathymetry efficiently generates high wavenumber internal waves, which are subject to local energy dissipation and hence strongly control the abyssal mixing; the most important finding is that the intensity and vertical decay scale of abyssal mixing are in a trade-off relationship with each other, which is not taken into account in the existing parameterizations.  相似文献   

6.
多波束水深测量中受潮汐因素的影响,测量垂直基准是变化的,具有瞬时性。传统多波束测量,需在测区内设立一个或多个验潮站进行同步水位观测,最终将水深归算到深度基准面上。针对多波束水深测量中垂直基准转换的复杂性问题,文中基于地球重力场模型,结合测区内实测的GNSS/水准数据,通过插值算法建立了测区范围内似大地水准面精化模型,构建了多波束无验潮水深测量的垂直基准转换模型。通过实例表明,该方法有效地消除了潮汐、动态吃水及涌浪等因素影响,直接获取深度基准面的水深值,提高工作效率,可满足近岸多波束水深测量的工作需求。  相似文献   

7.
The bathymetry data of marine bodies have been collected over a century, and the collected data have a wide range of resolution and accuracy. Acquisition of bathymetry data is very costly and time-consuming. One can use the old, low-quality bathymetry data to fill the gap in high-quality, recently acquired bathymetry data after correcting the old data to improve its quality so that it is comparable to the high-quality data. The old data correction can be treated as a nonlinear inverse problem. Simulated annealing (SA) global optimization method was used here in solving this problem. The two sets of data that were used are project survey (PS) and Vietnamese Navy Chart (VNC) data. The PS data were collected in 2000 in an offshore survey from the Vietnam coast in the South China Sea (SCS). The VNC data were obtained by digitizing VNC that was published in 1981. Inverse distance weighted (IDW) interpolation method was used for forward modeling. Weperformed the SA algorithm run starting at a high "temperature," then lowering the "temperature" gradually up to the "critical temperature" and then staying there for the rest of the run. The best model chosen by the algorithm showed an improvement of 63% from the original model. We then constructed a digital bathymetry model (DBM) of the study area with the combined corrected VNC and the PS data.  相似文献   

8.
The bathymetry data of marine bodies have been collected over a century, and the collected data have a wide range of resolution and accuracy. Acquisition of bathymetry data is very costly and time-consuming. One can use the old, low-quality bathymetry data to fill the gap in high-quality, recently acquired bathymetry data after correcting the old data to improve its quality so that it is comparable to the high-quality data. The old data correction can be treated as a nonlinear inverse problem. Simulated annealing (SA) global optimization method was used here in solving this problem. The two sets of data that were used are project survey (PS) and Vietnamese Navy Chart (VNC) data. The PS data were collected in 2000 in an offshore survey from the Vietnam coast in the South China Sea (SCS). The VNC data were obtained by digitizing VNC that was published in 1981. Inverse distance weighted (IDW) interpolation method was used for forward modeling. Weperformed the SA algorithm run starting at a high "temperature," then lowering the "temperature" gradually up to the "critical temperature" and then staying there for the rest of the run. The best model chosen by the algorithm showed an improvement of 63% from the original model. We then constructed a digital bathymetry model (DBM) of the study area with the combined corrected VNC and the PS data.  相似文献   

9.
A data–model assimilation method (called “Beach Wizard”) is presented with which the nearshore subtidal bathymetry can be accurately estimated based on video-derived observations of wave roller dissipation and variation of the intertidal shoreline, and/or radar-derived observations of wave celerity. Using many consecutive images, these observed properties are compared with numerical model results, and through a simple, optimal least-squares estimator approach the estimated bathymetry is adjusted gradually for each image in order to improve the fit between model output and observations. The key advantages of the technique are that it is based on multiple sources of information (i.e., different remote sensors and/or data products), depends on only a few free parameters (to which the model results are insensitive), and shows good skill. Herein, the technique is applied to a synthetic case and two sets of field data from sites at Duck, NC (USA) and Egmond (The Netherlands). The method, which may be extended with observations of other properties from other sources than the three described in this paper, can deliver coastal state information (i.e., simultaneous updates of bathymetry, waves, and currents) with high temporal and spatial resolution and can be used in conjunction with or instead of in-situ measured data.  相似文献   

10.
National hydrographic offices need a better means of assessing the adequacy of existing nautical charts in order to plan and prioritize future hydrographic surveys. The ability to derive bathymetry from multispectral satellite imagery is a topic that has received considerable attention in scientific literature. However, published studies have not addressed the ability of satellite-derived bathymetry to meet specific hydrographic survey requirements. Specifically, the bathymetry needs to be referenced to a chart datum and statistical uncertainty estimates of the bathymetry should be provided. Ideally, the procedure should be based on readily-available, low-cost software, tools, and data. This paper describes the development and testing of a procedure using publicly-available, multispectral satellite imagery to map and portray shallow-water bathymetry in a GIS environment for three study sites: Northeast United States, Nigeria, and Belize. Landsat imagery and published algorithms were used to derive estimates of the bathymetry in shallow waters, and uncertainty of the satellite-derived bathymetry was then assessed using a Monte Carlo method. Results indicate that the practical procedures developed in this study are suitable for use by national hydrographic offices.  相似文献   

11.
A new bathymetry processing software package has been developed to postprocess new GLORI-B swath bathymetry data using preexisting techniques. GLORI-B bathymetry is calculated using an interferometry (phase delay) method using the modified GLORIA towfish which has parallel rows of transducers on both sides. We describe four types of artifacts observed during the first use of this new system during Legs 5 and 6 of the Gloria Expedition which surveyed the fastest spreading segment of the global seafloor spreading system and the broad chain of volcanoes near Easter Island. These artifacts include cross-track bias, along-track bias, a 'dropped edge' effect, and random noise. We describe and illustrate how we minimize these artifacts. We merge the SeaBeam 2000 bathymetry data with the GLORI-B bathymetry data to produce a final bathymetric mosaic which covers about 243,400 km2 and shows a different style of diffuse widely spread volcanism not previously observed along hotspot chains. The data are used in several studies describing seamount morphology, elastic thickness of the lithosphere, tectonic and geochemical evolution of the area, and mantle flow from a hotspot to a superfast seafloor spreading center.  相似文献   

12.
Steve Sramek 《Marine Geodesy》2013,36(2-3):151-163
Local changes in the marine geoid (<100 nm in size) correspond well with bathymetric features such as seamounts. Thus the marine geoid height may be used to verify existing features, predict the bathymetry of unsurveyed areas, and fill gaps in existing data. The application of matching high‐pass filters to both the geoid and bathymetry data of an area allows the regional trends to be removed so that only the features remain. Filter values that begin to pass data with wavelengths less than 125 miles and all data with wave lengths less than 70 miles were selected. The high‐frequency variations of the geoid can then be correlated to the bathymetry and a scaling factor between the two calculated. The highest correlations (.81) were achieved using a cut‐off value for the filtered geoid data. A gridded synthetic bathymetry file was created by scaling the filtered geoid to the filtered bathymetry and adding the low pass background bathymetry. The gridded historical bathymetry could then be subtracted from the synthetic bathymetry in an automated method to display probable new features. A final selection of 458 previously unreported major features was then made.  相似文献   

13.
Sounding acts as the main feature in a digital nautical chart as it describes the concerned marine topography for the safety of navigation. Unlike the geometry-oriented selection of point feature, the generalization of soundings for chart compiling is expected to be context-oriented, which means bathymetry complexity variations across the study region should be preserved in the sounding selection process. However, such variations are not explicitly accessible to automated systems. This paper proposes an approach that effectively analyzes and measures bathymetry complexity from sounding data, with a focus on topography variations among different regions. The presented approach first divides the exploring region into several subregions, by adopting techniques of computational geometry and graph theory. Then, the approach quantitatively measures the bathymetry complexity of the subregions from grid-based digital terrain model. Finally, a composite bathymetry complexity index integrating aspects of steepness and depth variation is developed to guide the operation of sounding selection in different subregions. Generally, when seafloor is rugged with steep slopes, the number of soundings is high. While in flatter areas, a smaller amount of soundings is retained. The potential of our approach is demonstrated by an application to a real data set.  相似文献   

14.
将多角测深侧扫声纳(MSBSS)中应用的计算到达角瞬态成像(CAATI)技术扩展到三维空间,提出一种基于L型阵列的二维CAATI高分辨DOA估计方法,同时解决了信号的参数配对问题。该算法具有运算量和快拍数均较小的优点,为水下三维高分辨探测提供了可能。  相似文献   

15.
传统的湖泊、海岸带测深主要是基于船载多波束系统或者机载激光雷达测深系统,但这些方式测量成本较高。因此提出了一种仅利用卫星观测数据,实现高分辨率动态水域地形图的获取方法,该方法基于ICESat-2单光子激光点云和Landsat图像数据的全球地表水数据集(GSWD),对所获取的高精度激光沿轨轮廓线与多年期湖泊水域边界等高线进行融合匹配。以美国最大的水库米德湖为实验区域,生成高程范围约为34 m的地形图结果,覆盖面积超过307 km~2,水平分辨率为30 m;在与机载激光雷达数据等现场实测结果的对比中,所绘制地形图均方根误差约为2 m。研究方法有望为水位波动较大或水质相对较好的内陆水体(例如湖泊)和沿海地区(例如潮间带)提供一种新的水陆交界区域地形图获取方法。  相似文献   

16.
随着我国浅海测绘需求的日益增长,文中利用四波段的WorldView-2高分辨率遥感影像,选取我国南海西沙群岛中的甘泉岛和台湾南湾地区作为典型试验区,开展水深反演研究。引入随机森林算法构建了随机森林水深反演模型,并同常用的3种水深反演模型进行精度对比。结果表明,在甘泉岛和南湾地区随机森林模型反演的水深值和真实水深值的RMSE分别为0.85 m和1.59 m,MRE分别为8%和12%,均优于其他3种模型。  相似文献   

17.
本文基于海浪波折射现象和浅水波理论,提出了一种基于单景高分辨率光学遥感影像的浅海地形提取方法。首先,基于浅水波理论推导出适用于浅海区域的水深与海浪波长、频率的定量关系,针对近岸光学遥感图像复杂的海浪特征,讨论了两种海浪波长提取方法,即FFT方法和剖面线法。然后提出了基于长距离波长波动分析的海浪频率计算方法,解决了单景遥感影像的波浪频率计算难题。最后,利用单景QuickBird高分辨率光学遥感影像,以海南岛三亚湾为研究区域进行了应用实验,结果表明,对12m以浅的浅海区域,在不需要任何辅助参数的情况下,反演获得了浅海地形(DEM),经与1:25000比例尺海图的水深对比验证,地形趋势吻合良好,反演水深的均方根误差为1.07m,相对水深误差为16.2%,表明该方法适合于浅海水下地形的提取,且具有无需实测水深数据和环境参数的支持的优点。  相似文献   

18.
滨浅海单波束测深潮汐改正的方法   总被引:2,自引:0,他引:2  
单波束测深仪在现在的海上地质调查中被广泛应用,潮汐校正是必不可少的内容。我们给出一种利用潮汐预报值进行潮汐改正的方法和过程,并介绍该方法在黄河三角洲环境地质补充调查项目中的应用。  相似文献   

19.
受船载仪器、海况等要素限制,传统水深测量中浅水区域无法对浅海水深进行测量。为克服此困难,利用近年来新兴的机载激光测深系统(light detection and ranging system,简称LiDAR)进行浅海水深测量,用LiDAR获取的点云数据进行处理后得到的水下地形等深线与海图图载水深进行直观对比,同一坐标点下的点云水深与截图水深进行定量分析。结果表明,LiDAR获取的水深精度高,水深点密集,可更快获得浅海区域详细的高精度的水下地形。这些优点使其在近岸浅海海岸防护、围海造田、港口建设等海洋工程项目中应用前景广阔。此外目前国内LiDAR技术主要用于陆地,应用于浅海水深测绘还很少,本研究对机载LiDAR进行水深测量的研究进行了补充。  相似文献   

20.
Mapping shoreline changes along coastal regions is critically important in monitoring continuously rising sea surface heights due to climate change and frequent severe storms. Thus, it is especially important if the region has very high tidal ranges over very gentle tidal flats, which is a very vulnerable region. Although the various remote sensing platforms can be used to map shoreline changes, the spatial and temporal resolutions are not enough to obtain it for a short time. Accordingly, in this study we introduce the newly developed low altitude Helikite remote sensing platform to achieve much better resolutions of shorelines and a bathymetry. The Helikite stands for Helium balloon and Kite, which is a kind of aerial platform that uses the advantages of both a Helium balloon and a kite. Field experiments were conducted in the Jaebu Island, off the coast of the west Korean Peninsula in January 29, 2011. In order to extract shorelines from the consecutive images taken by the low altitude Helikite remote sensing platform, active contours without edges (ACWE) is used. Edges or boundaries exist primarily on places between one type of objective and the other. Since the hydrodynamic pressure has an effect everywhere, the locations of the waterlines can be the isobath lines. We could map several waterlines, which would enable us to complete a local bathymetry map ranges from 35 to 60 cm depth. The error resulting from applying ACWE algorithm to the imagery to determine the waterline is approximately less than 1 m. Therefore, it is very unique way to obtain such high resolutions of bathymetry with high accuracy for the regions of extremely high tidal ranges for a short time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号