首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon–nitrogen(CN) interactions(CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83(BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production(GPP) and latent heat flux(LE) for the dry season, and improved the carbon(C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m~(-2)d~(-1), net ecosystem exchange by 1.96 g C m~(-2)d~(-1), LE by 5.0 W m~(-2), and soil moisture by 0.03 m~3m~(-3), at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses(including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.  相似文献   

2.
植被总初级生产力(Gross Primary Productivity,GPP)决定进入陆地生态系统的初始物质和能量,是陆地碳循环与大气碳库的重要联系纽带。利用陆面过程模式CLM4-CN(Community Land Model version 4 with CarbonNitrogen interactions)模拟和分析中国区域1982~2004年GPP(CLM4_GPP)时空变化特征,并通过与基于观测数据升尺度所得到的MTE_GPP(Model Tree Ensemble,MTE)进行比较,评估CLM4在中国区域GPP的模拟能力,同时探讨了不同土地覆盖资料对GPP的影响。结果表明:(1)CLM4-CN能够较好地刻画中国区域GPP空间分布格局,表现为由东南向西北递减,但在量值上大部分区域尤其是30°N以南地区存在高估,CLM4-CN模拟的GPP多年平均值为13.7 Pg C a-1,而MTE_GPP仅为6.9 Pg C a-1;(2)CLM4-CN可以合理模拟GPP的季节变化(与MTE_GPP相关系数大于0.9),在量值上对温带阔叶落叶林、寒带阔叶落叶林、寒带阔叶落叶灌木、C3极地草地、C3非极地草地和农作物模拟较好(均方根偏差RMSD100 g C m-2 month-1);(3)不同植物功能型CLM4_GPP表现出的年际变率均大于MTE_GPP,仅热带针叶常绿林、寒带阔叶落叶林和C3极地草地的CLM4_GPP与MTE_GPP变化趋势一致;(4)降水是研究时段内控制整个中国区域GPP的主要气候因子,但不同地区存在较大差异;(5)两种不同土地覆盖资料GPP模拟结果的显著差异表明,精确的土地覆盖是准确模拟GPP的重要基础。  相似文献   

3.
我国北方地区植被总初级生产力的空间分布与季节变化   总被引:3,自引:0,他引:3  
本研究通过集成Terra MODIS卫星影像数据与地面通量台站的观测数据, 改进了基于遥感的VPM光能利用率模型, 模拟了我国北方地区2008年陆地生态系统总初级生产力 (GPP) 的空间分布与季节变化。研究表明: (1) 我国北方地区植被GPP在空间分布上表现为东高西低的特征, 年均值为518.36 g/m2 (C重量, 下同)。 (2) 我国北方地区主要植被类型的GPP有较强的季节动态, 大体上都表现出单峰变化趋势。GPP值按照由大到小顺序依次为: 夏绿阔叶林 (DBF)>针阔混交林 (MF)>农田 (Crop)>落叶针叶林 (DNF)>常绿针叶林 (ENF)>草地 (Grass)>稀疏灌丛 (Oshrub)>裸地或稀疏植被 (BSV)。(3) 整个区域的GPP季相变化表现为: 夏季最高, 达到32.80 g?m-2?(8 d)-1, 为全年最大值; 春季GPP为5.67 g?m-2?(8 d)-1, 与秋季的5.08 g?m-2?(8 d)-1较为接近, 冬季GPP最弱, 仅为0.07 g?m-2?(8 d)-1。与通量台站实测值及前人研究结果的比较表明, 本文所模拟的GPP与观测值之间的相对误差绝对值多小于15%, 表明模拟结果具有较好的可靠性。这说明通过集成遥感观测数据与台站观测数据的方法来模拟GPP, 可以较准确地模拟区域尺度的GPP空间分布与时间变化, 这为深入研究陆气相互作用提供了重要研究手段。  相似文献   

4.
Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.  相似文献   

5.
全球植被与大气之间碳通量的模式估计(英文)   总被引:1,自引:0,他引:1  
用大气植被相互作用模式(AVIM)模拟了全球陆地植被的净初级生产力(NPP)。AVIM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13gCm-2yr-1,不同植被类型的平均 NPP变化范围在99.58 g Cm-2yr-1(苔原)到996.2 g Cm-2yr-1(热带雨林)之间。全球年总NPP为60.72GtCyr-1,其中最大的部分为热带雨林,15.84GtCyr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

6.
全球植被与大气之间碳通量的模式估计   总被引:15,自引:0,他引:15  
用大气植被相互作用模式(AⅥM)模拟了全球陆地植被的净初级生产力(NPP)。AⅥM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13 g C m-2yr-1,不同植被类型的平均NPP变化范围在99.58 g C m-2yr-l(苔原)到996.2 g C m-2yr-l(热带雨林)之间。全球年总NPP为60.72 Gt C yr-l,其中最大的部分为热带雨林,15.84 Gt C yr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

7.
1. IntroductionAccording to the reconstruction of paleo-temperature based on δ18 O data of ice core in theGreenland (see Jouzel et al., 1987; Grootes et al.,1993; Blunier and Brook, 2001), the current inter-glacial epoch, the Holocene, began at ca. 11.5 thou-sand years before present (ka BP). Multiple sources(pollen data, macrofossils) reveal that the summer cli-mate in the Northern Hemisphere was warmer in theearly to middle Holocene (MH) (ca. 8-6ka BP) relativeto the present climate. …  相似文献   

8.
Since the 1950s, the terrestrial carbon uptake has been characterized by interannual variations, which are mainly determined by interannual variations in gross primary production (GPP). Using an ensemble of seven-member TRENDY (Trends in Net Land–Atmosphere Carbon Exchanges) simulations during 1951–2010, the relationships of the interannual variability of seasonal GPP in China with the sea surface temperature (SST) and atmospheric circulations were investigated. The GPP signals that mostly relate to the climate forcing in terms of Residual Principal Component analysis (hereafter, R-PC) were identified by separating out the significant impact from the linear trend and the GPP memory. Results showed that the seasonal GPP over China associated with the first R-PC1 (the second R-PC2) during spring to autumn show a monopole (dipole or tripole) spatial structure, with a clear seasonal evolution for their maximum centers from springtime to summertime. The dominant two GPP R-PC are significantly related to Sea Surface Temperature (SST) variability in the eastern tropical Pacific Ocean and the North Pacific Ocean during spring to autumn, implying influences from the El Ni?o–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The identified SST and circulation factors explain 13%, 23% and 19% of the total variance for seasonal GPP in spring, summer and autumn, respectively. A clearer understanding of the relationships of China’s GPP with ocean–atmosphere teleconnections over the Pacific and Atlantic Ocean should provide scientific support for achieving carbon neutrality targets.  相似文献   

9.
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months.  相似文献   

10.
Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes. Remote sensing-based models, which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics, improve spatially extended estimates of vegetation productivity with high accuracy. In this study, the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM), which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types. The field data were collected by coordinating observations at nine stations in 2008. The results indicate that in the region during the growing season GPP was highest in cropland sites, second highest in woodland sites, and lowest in grassland sites. VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas. Further, Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas, while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation. This study demonstrates the potential of satellite-driven models for scaling-up GPP, which is a key component for studying the carbon cycle at regional and global scales.  相似文献   

11.
Snowfall and the subsequent evolution of the snowpack have a large effect on the surface energy balance and water cycle of the Tibetan Plateau (TP). The effects of snow cover can be represented by the WRF coupled with a land surface scheme. The widely used Noah scheme is computationally efficient, but its poor representation of albedo needs considerable improvement. In this study, an improved albedo scheme is developed using a satellite-retrieved albedo that takes snow depth and age into account. Numerical experiments were then conducted to simulate a severe snow event in March 2017. The performance of the coupled WRF/Noah model, which implemented the improved albedo scheme, is compared against the model’s performance using the default Noah albedo scheme and against the coupled WRF/CLM that applied CLM albedo scheme. When the improved albedo scheme is implemented, the albedo overestimation in the southeastern TP is reduced, reducing the RMSE of the air temperature by 0.7°C. The improved albedo scheme also attains the highest correlation between the satellite-derived and the model-estimated albedo, which provides for a realistic representation of both the snow water equivalent (SWE) spatial distribution in the heavy snowbelt (SWE > 6 mm) and the maximum SWE in the eastern TP. The underestimated albedo in the coupled WRF/CLM leads to underestimating the regional maximum SWE and a consequent failure to estimate SWE in the heavy snowbelt accurately. Our study demonstrates the feasibility of improving the Noah albedo scheme and provides a theoretical reference for researchers aiming to improve albedo schemes further.  相似文献   

12.
In order to compare the impacts of the choice of land surface model(LSM) parameterization schemes, meteorological forcing, and land surface parameters on land surface hydrological simulations, and explore to what extent the quality can be improved, a series of experiments with different LSMs, forcing datasets, and parameter datasets concerning soil texture and land cover were conducted. Six simulations are run for the Chinese mainland on 0.1° × 0.1° grids from 1979 to 2008, and the simulated mon...  相似文献   

13.
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.  相似文献   

14.
Gross primary production (GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems. A set of validated monthly GPP data from 1957 to 2010 in 0.5° × 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging (BMA). The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Ni?o years indicated that GPP response to El Ni?o varies with Pacific Decadal Oscillation (PDO) phases: when the PDO was in the cool phase, it was likely that GPP was greater in northern China (32°–38°N, 111°–122°E) and less in the Yangtze River valley (28°–32°N, 111°–122°E); in contrast, when PDO was in the warm phase, the GPP anomalies were usually reversed in these two regions. The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon. The previously published findings on how El Ni?o during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Ni?o in this study theoretically credible. This paper not only introduces an effective way to use BMA in grids that have mixed plant function types, but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Ni?o and PDO.  相似文献   

15.
本文基于北京325米气象塔在47,140,和280米三层高度的5年涡动相关观测资料,研究了城市下垫面与大气间的CO2交换过程.由于北京市2011年开始实行工作日汽车尾号限行,140米高度CO2通量的年增长率由2008-2010年的7.8%降低到2010-2012年的2.3%.140米高度通量源区内植被比例最小且人口密度最大,因此140米高度的5年平均CO2通量年总量)6.41 kg C m-2 yr-1(大于47米)5.78 kg C m-2 yr-1(和280米)3.99 kg C m-2 yr-1(.在年尺度上,北京汽车总保有量和总人口是最重要的CO2通量控制因子.CO2通量随风向的变化主要与风向对应的通量源区内下垫面土地利用方式有关.三层高度的夏季CO2通量均与道路的比例呈正相关关系.47,140,和280米的决定系数分别为0.69,0.57,和0.54(P<0.05).植被比例的下降,会导致CO2年总量上升,两者存在近似于指数的关系.城市人口密度的上升会引起CO2年总量上升.  相似文献   

16.
Long-Term Trends in Photosynthetically Active Radiation in Beijing   总被引:1,自引:0,他引:1  
A long-term dataset of photosynthetically active radiation (Qp) is reconstructed from a broadband global solar radiation (Rs) dataset through an all-weather reconstruction model. This method is based on four years' worth of data collected in Beijing. Observation data of Rs and Qp from 2005--2008 are used to investigate the temporal variability of Qp and its dependence on the clearness index and solar zenith angle. A simple and efficient all-weather empirically derived reconstruction model is proposed to reconstruct Qp from Rs. This reconstruction method is found to estimate instantaneous Qp with high accuracy. The annual mean of the daily values of Qp during the period 1958--2005 period is 25.06 mol m-2 d-1. The magnitude of the long-term trend for the annual averaged Qp is presented (-0.19 mol m-2 yr-1 from 1958--1997 and -0.12 mol m-2 yr-1 from 1958--2005). The trend in Qp exhibits sharp decreases in the spring and summer and more gentle decreases in the autumn and winter.  相似文献   

17.
The terrestrial carbon(C) cycle plays an important role in global climate change, but the vegetation and environmental drivers of C fluxes are poorly understood. We established a global dataset with 1194 available data across site-years including gross primary productivity(GPP), ecosystem respiration(ER), net ecosystem productivity(NEP), and relevant environmental factors to investigate the variability in GPP, ER and NEP, as well as their covariability with climate and vegetation drivers.The results indicated that both GPP and ER increased exponentially with the increase in mean annual temperature(MAT)for all biomes. Besides MAT, annual precipitation(AP) had a strong correlation with GPP(or ER) for non-wetland biomes.Maximum leaf area index(LAI) was an important factor determining C fluxes for all biomes. The variations in both GPP and ER were also associated with variations in vegetation characteristics. The model including MAT, AP and LAI explained 53%of the annual GPP variations and 48% of the annual ER variations across all biomes. The model based on MAT and LAI explained 91% of the annual GPP variations and 92.9% of the annual ER variations for the wetland sites. The effects of LAI on GPP, ER or NEP highlighted that canopy-level measurement is critical for accurately estimating ecosystem–atmosphere exchange of carbon dioxide. The present study suggests a significance of the combined effects of climate and vegetation(e.g.,LAI) drivers on C fluxes and shows that climate and LAI might influence C flux components differently in different climate regions.  相似文献   

18.
利用国际耦合模式比较计划第六阶段(CMIP6)中18个地球系统模式总初级生产力(GPP)模拟数据,基于传统的多模式集合平均(MME)和可靠集合平均方法(REA),在4个未来情景(SSP1-2.6,SSP2-4.5,SSP3-7.0和SSP5-8.5)下预估了21世纪全球陆地生态系统GPP的变化量,并分析了GPP变化的驱动因子。研究结果表明:在4个未来情景下,基于REA方法预估的全球陆地生态系统年GPP在未来时期(2068—2100年)比历史时期(1982—2014年)分别增长了(14.85±3.32)、(28.43±4.97)、(37.66±7.61)和(45.89±9.21)Pg C,其增量大小和不确定性都明显低于MME方法。在4个情景下,大气CO2浓度增长对GPP变化的贡献最大,基于REA方法计算的贡献占比分别为140%、137%、115%和75%;除SSP5-8.5(24%)外,其他情景下升温均导致全球陆地生态系统GPP降低(-42%、-37%、-16%),部分抵消了CO2施肥效应的正面贡献。温度的影响存在纬度差异:升温在低纬度地区对GPP有负向贡献,在中高纬度地区为正向贡献。降水和辐射变化对GPP变化的贡献相对较小。  相似文献   

19.
This study presents an evaluation of a new biosphere-atmosphere Regional Climate Model. COSMO-CLM2 results from the coupling between the non-hydrostatic atmospheric model COSMO-CLM version 4.0 and the Community Land Model version 3.5 (CLM3.5). In this coupling, CLM3.5 replaces a simpler land surface parameterization (TERRA_ML) used in the standard COSMO-CLM. Compared to TERRA_ML, CLM3.5 comprises a more complete representation of land surface processes including hydrology, biogeophysics, biogeochemistry and vegetation dynamics. Historical climate simulations over Europe with COSMO-CLM and with the new COSMO-CLM2 are evaluated against various data products. The simulated climate is found to be substantially affected by the coupling with CLM3.5, particularly in summer. Radiation fluxes as well as turbulent fluxes at the surface are found to be more realistically represented in COSMO-CLM2. This subsequently leads to improvements of several aspects of the simulated climate (cloud cover, surface temperature and precipitation). We show that a better partitioning of turbulent fluxes is the central factor allowing for the better performances of COSMO-CLM2 over COSMO-CLM. Despite these improvements, some model deficiencies still remain, most notably a substantial underestimation of surface net shortwave radiation. Overall, these results highlight the importance of land surface processes in shaping the European climate and the benefit of using an advanced land surface model for regional climate simulations.  相似文献   

20.
2013年9月国务院颁布了《大气污染防治行动计划》.研究其实施前后呼和浩特市大气污染物浓度变化及及原因;同时,分析了春季沙尘天气对于呼和浩特市大气环境颗粒物浓度的定量影响.结果表明:呼和浩特市大气环境质量持续改善,但大气污染物浓度仍然较高.PM2.5和PM10年均浓度分别超过国家二级标准22.9%和35.7%;2013...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号