首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert L. Linnen   《Lithos》2005,80(1-4):267-280
The solubilities of columbite, tantalite, wolframite, rutile, zircon and hafnon were determined as a function of the water contents in peralkaline and subaluminous granite melts. All experiments were conducted at 1035 °C and 2 kbar and the water contents of the melts ranged from nominally dry to approximately 6 wt.% H2O. Accessory phase solubilities are not affected by the water content of the peralkaline melt. By contrast, solubilities are affected by the water content of the subaluminous melt, where the solubilities of all the accessory phases examined increase with the water content of the melt, up to 2 wt.% H2O. At higher water contents, solubilities are nearly constant. It can be concluded that water is not an important control of accessory phase solubility, although the water content will affect diffusivities of components in the melt, thus whether or not accessory phases will be present as restite material. The solubility behaviour in the subaluminous and peralkaline melts supports previous spectroscopic studies, which have observed differences in the coordination of high field strength elements in dry vs. wet subaluminous granitic glasses, but not for peralkaline granitic glasses. Lastly, the fact that wolframite solubility increases with increasing water content in the subaluminous melt suggests that tungsten dissolved as a hexavalent species.  相似文献   

2.
Trevor H. Green  John Adam 《Lithos》2002,61(3-4):271-282
The solubility of Ti- and P-rich accessory minerals has been examined as a function of pressure and K2O/Na2O ratio in two series of highly evolved silicate systems. These systems correspond to (a) alkaline, varying from alkaline to peralkaline with increasing K2O/Na2O ratio; and (b) strongly metaluminous (essentially trondhjemitic at the lowest K2O/Na2O ratio) and remaining metaluminous with increasing K2O/Na2O ratio (to 3). The experiments were conducted at a fixed temperature of 1000 °C, with water contents varying from 5 wt.% at low pressure (0.5 GPa), increasing through 5–10 wt.% at 1.5–2.5 GPa to 10 wt.% at 3.5 GPa. Pressure was extended outside the normal crustal range, so that the results may also be applied to derivation of hydrous silicic melts from subducted oceanic crust.

For the alkaline composition series, the TiO2 content of the melt at Ti-rich mineral saturation decreases with increasing pressure but is unchanged with increasing K content (at fixed pressure). The P2O5 content of the alkaline melts at apatite saturation increases with increased pressure at 3.5 GPa only, but decreases with increasing K content (and peralkalinity). For the metaluminous composition series (termed as “trondhjemite-based series” (T series)), the TiO2 content of the melt at Ti-rich mineral saturation decreases with increasing pressure and with increasing K content (at fixed pressure). The P2O5 content of the T series melts at apatite saturation is unchanged with increasing pressure, but decreases with increasing K content. The contrasting results for P and Ti saturation levels, as a function of pressure in both compositions, point to contrasting behaviour of Ti and P in the structure of evolved silicate melts. Ti content at Ti-rich mineral saturation is lower in the alkaline compared with the T series at 0.5 GPa, but is similar at higher pressures, whereas P content at apatite saturation is lower in the T series at all pressures studied. The results have application to A-type granite suites that are alkaline to peralkaline, and to I-type metaluminous suites that frequently exhibit differing K2O/Na2O ratios from one suite to another.  相似文献   


3.
Melting triggered by influx of a free aqueous fluid in the continental crust has commonly been inferred, but the source of water in such contexts remains a matter of debate. We focus on the Tertiary migmatites in the Southern Steep Belt of the Central Alps (Switzerland) to discuss the petrology, structures and geodynamic setting of water-assisted melting. These migmatites comprise various structural types (e.g. metatexites, diatexites, melt in shear zones), which reflect variable leucosome fractions. The melting event itself as well as the variable melt fractions are related to the amount of aqueous fluids. At a given P and T, melt-fractions in rocks of minimum melt composition correlate with the amount of infiltrated aqueous fluids. In more granodioritic systems the water distributes between melt and newly crystallizing hydrous phases such as amphibole, such that the melt fraction correlates with the contents of H2O, Al, and Ca in the system. Phase-equilibrium modelling indicates that the stabilization of amphibole leads to slightly lower melt fractions than in a granitic system at the same P, T and bulk water content. Phase-equilibrium models further indicate that in the Alpine migmatite belt: (1) several wt.% water (fluid:rock ratio of  1:30) are necessary to produce the inferred melt fraction; (2) the activity of H2O in the fluid is high; and (3) spatially associated metapelites are unlikely as a source for the required aqueous fluids.

We present a tectonic scenario for the southern margin of the Central Alps, to which these migmatites are confined, and we propose that water was produced from dehydration reactions in metapelites in the Southern Alps. We model fluid production rates at the time of melting and demonstrate that the resulting fluid flow pattern is mainly controlled by the differences in permeability between the fluid source region and melting region. The proposed model requires strong gradients in temperature and permeability for the two tectonic blocks. This is consistent with the scenario involving indenter tectonics at the boundary between the Central and the Southern Alps in Oligocene times.  相似文献   


4.
The Amo Complex forms one of the prominent ring intrusions in the Jos Plateau and it is lithologically composed of granite porphyry, riebeckite biotite granite, hornblende biotite granite and later intrusives of biotite granite. There are also small intrusions of albite riebeckite granite and albite biotite granite.

Major-element compositions of the principal rock units do not show significant differences. Comparison of the variations found in the granites with results of laboratory studies suggest either that water vapor and volatile transfer were important in the local magma series or at least they accompanied other systematic variations.

Trace-element associations vary; anomalous enrichments of Rb, Li, F, U, Th, Zr, Nb and HREE occur over mildly peralkaline riebeckite biotite granite, peralkaline albite riebeckite granite and albite biotite granite with peralkaline tendency, in contrast to their peraluminous equivalents. These cannot be explained by crystal-liquid fractionation processes and require the evolution of a Na-enriched fluid.

It is suggested that in the albite riebeckite granite and the albite biotite granite the combined effect of F, Li and Rb along with other volatiles may have led to a lower crystallization temperature such that two separate alkali feldspars (albite and microcline) crystallized individually.

Cassiterite and columbite mineralization occur mainly as magmatic disseminations within the terminal phases of the biotite granites and albite biotite granite. Diffused greisenization in association with quartz veins also carry cassiterite mineralization in the Tega and Timber Creek biotite granite phases. Although the magma may have supplied the ore elements and F for complexing, actual mineralization appears to be a product of postmagmatic processes.  相似文献   


5.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

6.
A.D. Edgar  L.M. Parker 《Lithos》1974,7(4):263-273
From previous studies and from results of melting and crystallization sequences determined for four plutonic rocks and for four glass-bearing volcanic rocks all with peralkaline chemistry, the degree of peralkalinity, ZrO2, TiO2, F and Cl contents of the plutonic and holocrystalline volcanic rocks can be correlated with their melting intervals. This correlation does not hold for the glassy volcanic rocks. Analyses of whole rock and coexisting glasses suggest that rapidly chilled peralkaline volcanics may behave differently from holocrystalline peralkaline rocks due to different cooling rates causing variations in the distribution of volatiles such as Cl, between liquid and solid phases of the crystallizing melt.  相似文献   

7.
In the Lachlan Fold Belt of southeastern Australia, Upper Devonian A-type granite suites were emplaced after the Lower Devonian I-type granites of the Bega Batholith. Individual plutons of two A-type suites are homogeneous and the granites are characterized by late interstitial annite. Chemically they are distinguished from I-type granites with similar SiO2 contents of the Bega Batholith, by higher abundances of large highly charged cations such as Nb, Ga, Y, and the REE and lower Al, Mg and Ca: high Ga/Al is diagnostic. These A-type suites are metaluminous, but peralkaline and peraluminous A-type granites also occur in Australia and elsewhere. Partial melting of felsic granulite is the preferred genetic model. This source rock is the residue remaining in the lower crust after production of a previous granite. High temperature, vapour-absent melting of the granulitic source generates a low viscosity, relatively anhydrous melt containing F and possibly Cl. The framework structure of this melt is considerably distorted by the presence of these dissolved halides allowing the large highly charged cations to form stable high co-ordination structures. The high concentration of Zr and probably other elements such as the REE in peralkaline or near peralkaline A-type melts is a result of the counter ion effect where excess alkali cations stabilize structures in the melt such as alkali-zircono-silicates. The melt structure determines the trace element composition of the granite. Separation of a fluid phase from an A-type magma results in destabilization of co-ordination complexes and in the formation of rare-metal deposits commonly associated with fluorite. At this stage the role of Cl in metal transport is considered more important than F.  相似文献   

8.
R. Macdonald  B. Scaillet 《Lithos》2006,91(1-4):59-73
The central Kenya peralkaline province comprises five young (< 1 Ma) volcanic complexes dominated by peralkaline trachytes and rhyolites. The geological and geochemical evolution of each complex is described and issues related to the development of peralkalinity in salic magmas are highlighted. The peralkaline trachytes may have formed by fractionation of basaltic magma via metaluminous trachyte and in turn generated pantellerite by the same mechanism. Comenditic rhyolites are thought to have formed by volatile-induced crustal anatexis and may themselves have been parental to pantelleritic melts by crystal fractionation. The rhyolites record very low temperatures of equilibration (≤ 700 °C) at low fO2 (≤ FMQ). The development of compositional zonation within the magma reservoirs has been ubiquitous, involving up to tens of cubic km of magma at timescales of 103–104 years. Magma mixing has also been commonplace, sometimes between adjacent centres. Isotopic evidence relating to rates and timescales of pre-eruptive residence times and crystal fractionation processes is summarized.  相似文献   

9.
Small hexagonal and triangular platelets of molybdenite (MoS2), 5 to 25 m in diameter, were identified in phenocrysts and matrix glass of unaltered felsic volcanic rocks from Pantelleria, Italy. The MoS2 occurs commonly in pantellerites (peralkaline rhyolites), rarely in pantelleritic trachytes, and never in trachytes. The occurrence of euhedral MoS2 platelets in all phenocryst phases, in matrix glass, and even in some melt inclusions indicates that MoS2 precipitated directly from the peralkaline melt. Despite MoS2 saturation, the melt (glass) contains greater than 95% of the Mo in Pantellerian rocks: X-ray fluorescence analyses of 20 whole rocks and separated glasses show that whole rocks consistently contain less Mo than corresponding matrix glasses, the differences being in proportion to phenocryst abundances. The Mo contents increase with differentiation from trachytes (2–12 ppm) to pantellerites (15–25 ppm) and correlate positively with incompatible elements such as Th, Y, and Nb. The Mo concentrations, as determined by secondary ion mass spectrometry, are essentially the same in matrix glasses and melt inclusions, showing that Mo did not partition strongly into a volatile fluid phase during outgassing. The high Mo contents of the pantellerites (relative to metaluminous magmas with 1–5 ppm) may be due to several factors: (1) the enhanced stability of highly charged cations (such as Mo6+, U4+, and Zr4+) in peralkaline melts; (2) the rarity of Fe-Ti oxides and litanite into which Mo might normally partition; (3) reduced volatility of Mo in low fO2, H2O-poor (1–2 wt%) peralkaline magmas. Geochemical modeling indicates that the precipitation of MoS2 can be explained simply by the drop in temperature during magmatic differentiation. The occurrence of MoS2 in pantellerites may result from their high Mo concentrations and low redox state (Ni/NiO=-2.5) relative to metaluminous magmas, causing them to reach MoS2 saturation at magmatic temperatures. The apparent absence of MoS2 microphenocrysts in more oxidized, metaluminous rhyolites may indicate that Mo is dissolved primarily as a hexavalent ion in those magmas.  相似文献   

10.
Detailed melt and fluid inclusion studies in quartz hosts from the Variscan Ehrenfriedersdorf complex revealed that ongoing fractional crystallization of the highly evolved H2O-, B-, and F-rich granite magma produced a pegmatite melt, which started to separate into two immiscible phases at about 720°C, 100 MPa. With cooling and further chemical evolution, the immiscibilty field expanded. Two conjugate melts, a peraluminous one and a peralkaline one, coexisted down to temperatures of about 490°C. Additionally, high-salinity brine exsolved throughout the pegmatitic stage, along with low-density vapor. Towards lower temperatures, a hydrothermal system gradually developed. Boiling processes occurred between 450 and 400°C, increasing the salinities of hydrothermal fluids at this stage. Below, the late hydrothermal stage is dominated by low-salinity fluids. Using a combination of synchrotron radiation-induced X-ray fluorescence analysis and Raman spectroscopy, the concentration of trace elements (Mn, Fe, Zn, As, Sb, Rb, Cs, Sr, Zr, Nb, Ta, Ag, Sn, Ta, W, rare earth elements (REE), and Cu) was determined in 52 melt and 8 fluid inclusions that are representative of distinct stages from 720°C down to 380°C. Homogenization temperatures and water contents of both melt and fluid inclusions are used to estimate trapping temperatures, thus revealing the evolutionary stage during the process. Trace elements are partitioned in different proportions between the two pegmatite melts, high-salinity brines and exsolving vapors. Concentrations are strongly shifted by co ncomitant crystallization and precipitation of ore-forming minerals. For example, pegmatite melts at the initial stage (700°C) have about 1,600 ppm of Sn. Concentrations in both melts decrease towards lower temperatures due to the crystallization of cassiterite between 650 and 550°C. Tin is preferentially fractionated into the peralkaline melt by a factor of 2–3. While the last pegmatite melts are low in Sn (64 ppm at 500°C), early hydrothermal fluids become again enriched with about 800 ppm of Sn at the boiling stage. A sudden drop in late hydrothermal fluids (23 ppm of Sn at 370°C) results from precipitation of another cassiterite generation between 400 and 370°C. Zinc concentrations in peraluminous melts are low (some tens of parts per million) and are not correlated with temperature. In coexisting peralkaline melts and high-T brines, they are higher by a factor of 2–3. Zinc continuously increases in hydrothermal fluids (3,000 ppm at 400°C), where the precipitation of sphalerite starts. The main removal of Zn from the fluid system occurs at lower temperatures. Similarly, melt and fluid inclusion concentrations of many other trace elements directly reflect the crystallization and precipitation history of minerals at distinctive temperatures or temperature windows.  相似文献   

11.
Two characteristics of peralkaline igneous rocks that are poorly understood are the extreme enrichment in HFSE, notably Zr, Nb, Y and REE, and the occurrence of fluid inclusions dominated by methane and higher hydrocarbons. Although much of the HFSE enrichment can be explained by magmatic processes, the common intense alteration of the parts of the peralkaline intrusions most enriched in these elements suggests that hydrothermal processes also play an important role in HFSE enrichment. Likewise, although the origin of the higher order hydrocarbons that occur as inclusions in these rocks is still debated, there is strong evidence that at least in some cases their formation involved hydrothermal processes. The issues of HFSE enrichment and hydrocarbon formation in peralkaline intrusions are examined using data from the Strange Lake pluton, a small, middle-Proterozoic intrusion of peralkaline granite in northeast Canada. This pluton contains some of the highest concentrations of Zr, REE and Y ever reported in an igneous body, and is characterised by abundant hydrocarbon-dominated fluid inclusions in rocks that have been hydrothermally altered, including those that form a potential HFSE ore zone. We show that HFSE at Strange Lake were partly concentrated to near exploitable levels as a result of their transport in a high salinity magmatic aqueous liquid, and that this fluid coexisted immiscibly with a carbonic phase which reacted with hydrogen and iron oxides generated during the associated hydrothermal alteration to produce hydrocarbons via a Fischer–Tropsch synthesis. As a result, hydrocarbons and HFSE mineralization are intimately associated. We then go on to show that hydrothermal alteration, HFSE mineralisation and hydrocarbons are also spatially associated in other peralkaline complexes, and present a model to explain this association, which we believe may be applicable to any peralkaline intrusion where HFSE enrichment was accompanied by calcium metasomatism, hematisation and hydrothermal fluorite. We also suggest that, even where these criteria are not satisfied, hydrothermally enriched HFSE and hydrocarbons will be intimately associated simply because they are products of the same initial magmatic fluid. Finally, we speculate that the association of HFSE and hydrocarbons may in some cases actually be genetic, if, as seems possible, unmixing or effervescence of a reduced carbonic fluid from the original magmatic fluid caused changes in temperature, pH, fO2 or the activity of volatile ligands sufficient to induce the deposition of HFSE minerals.  相似文献   

12.
The island of Lundy forms the southernmost igneous complex of the British Tertiary Volcanic Province (BTVP) and consists of granite (≈ 90%) emplaced into deformed Devonian sedimentary rocks (Pilton Shale) and associated with a swarm of dykes of dolerite/basalt, minor trachyte and rhyolite composition. The dolerites are of varied olivine basalt composition and are associated with peralkaline trachyte and subalkaline/peralkaline rhyolite with alkali feldspar and quartz ± alkali amphibole ± pyroxene mineralogy. The dyke swarm is therefore an anorogenic bimodal dolerite/basalt–trachyte/rhyolite BTVP association. Although the dyke association is bimodal in major element terms between dolerite/basalt and minor trachyte/rhyolite, the mineralogy and trace element geochemistry indicate that the dykes may be regarded as a cogenetic dolerite—peralkaline trachyte/rhyolite association with minor subalkaline rhyolites. Sr and Nd isotope data indicate derivation of these magmas from a similar BTVP mantle source (with or without minor contamination by Pilton Shale, or possibly Lundy granite). The petrogenesis of the Lundy dyke association is therefore interpreted in terms of extensive fractional crystallization of basaltic magma in a magma chamber of complex geometry below the (exposed) Lundy granite. Fractional crystallization of a representative dolerite magma (olivine ± clinopyroxene ± plagioclase) yields trachyte magma from which the crystallization of alkali feldspar (anorthoclase) ± plagioclase (oligoclase) + Fe–Ti oxide + apatite results in peralkaline rhyolite. Rarer subalkaline rhyolites result from fractionation from a similar dolerite source which did not achieve a peralkaline composition so allowing the crystallization and fractionation of zircon. The basalt–(minor trachyte)/rhyolite bimodality reflects rapid crystallization of basalt magma to trachyte (and rhyolite) over a relatively small temperature interval (mass fraction of melt, F = ≈ 0.15). The rapid high level emplacement of basalt, trachyte and rhyolite dyke magmas is likely to have been associated with the development of a substantial composite bimodal basalt–(minor trachytel)/rhyolite volcano above the BTVP Lundy granite in the Bristol Channel.  相似文献   

13.
This paper reports experimental data on columbite solubility in model water-saturated Li- and F-rich silicic melts with different contents of alumina and alkalis. It was found that the columbite solubility is strongly affected by melt composition and is maximal in peralkaline melt. The maximum contents of Ta and Nb in subaluminous and peraluminous melts at the contact with columbite are lower by at least an order of magnitude. The peralkaline melt is relatively enriched in Nb, and the peraluminous melt is enriched in Ta. The temperature dependence of solubility is positive but less pronounced than the effect of melt composition. It is most distinct in the subaluminous melts. The Nb/Ta ratio of melt usually decreases with decreasing temperature. The effect of pressure is relatively small. It was shown that columbite cannot crystallize on the liquidus of both peralkaline and peraluminous magmas. Perhaps, columbite crystallization from a melt is possible only at final near-solidus stages at the high degrees of crystallization of strongly evolved low-temperature melts.  相似文献   

14.
B. Bühn  R. B. Trumbull 《Lithos》2003,66(3-4):201-221
We compare the petrogenetic and chemical signatures of two alkali silicate suites from the Cretaceous Damaraland igneous province (Namibia), one with and one without associated carbonatite, in order to explore their differences in terms of magma source and evolution. The Etaneno complex occurs in close spatial proximity to the Kalkfeld bimodal carbonatite–alkali silicate complex, and is dominated by nepheline (ne)-monzosyenites and ne-bearing alkali feldspar syenites. The Etaneno samples have isotopic compositions of 87Sr/86Sr(i)=0.70462–0.70508 and Nd=−0.5 to −1.5, with the highest 87Sr/86Sr(i) and lowest Nd values observed in evolved samples. The magma differentiated via olivine, feldspar, clinopyroxene, and nepheline (ne) fractionation in a F-rich system, which fractionated Zr from Hf, and Y from Ho. Partly glassy, recrystallized inclusions in some samples are less evolved than their host rocks and contain a cumulate component (nepheline, plagioclase). The Kalkfeld ne-foidites (ijolites) and ne-syenites have 87Sr/86Sr(i)=0.70285–0.70592 and Nd=0.5 to 1.1. The isotope ratios show no consistent variation with rock composition, and they are in the same range as the associated carbonatites. The Kalkfeld silicate magma fractionated nepheline and alkali-feldspar in a CO2-dominated, F- and Ca-poor system. As a result, the rocks display some major and trace element trends distinctly different from those of the Etaneno samples.

We suggest that the Etaneno and the Kalkfeld magmas represent different melt fractions of a heterogeneous mantle source, resulting in different compositions especially with respect to CO2 contents of the primitive, parental magmas. In this scenario, the carbonated alkali silicate Kalkfeld parental melt contained a critical CO2 concentration and underwent liquid separation of carbonate and silicate melt fractions at crustal depths. The resulting silicate melt fraction experienced a very different mode of differentiation than the carbonate-poor Etaneno parental magma. Thus, the Kalkfeld rocks are depleted in Ca and other divalent cations, as well as F, rare-earth elements (REE), Ba, and P relative to the Etaneno syenites. We interpret these differences to reflect the partitioning of these elements into the carbonate melt fraction during immiscible separation.  相似文献   


15.
Oldoinyo Lengai, located in the Gregory Rift in Tanzania, is a world-famous volcano owing to its uniqueness in producing natrocarbonatite melts and because of its extremely high CO2 flux. The volcano is constructed of highly peralkaline [PI = molar (Na2O + K2O)/Al2O3 > 2–3] nephelinite and phonolites, both of which likely coexisted with carbonate melt and a CO2-rich fluid before eruption. Results of a detailed melt inclusion study of the Oldoinyo Lengai nephelinite provide insights into the important role of degassing of CO2-rich vapor in the formation of natrocarbonatite and highly peralkaline nephelinites. Nepheline phenocrysts trapped primary melt inclusions at 750–800 °C, representing an evolved state of the magmas beneath Oldoinyo Lengai. Raman spectroscopy, heating-quenching experiments, low current EDS and EPMA analyses of quenched melt inclusions suggest that at this temperature, a dominantly natritess-normative, F-rich (7–14 wt%) carbonate melt and an extremely peralkaline (PI = 3.2–7.9), iron-rich nephelinite melt coexisted following degassing of a CO2 + H2O-vapor. We furthermore hypothesize that the degassing led to re-equilibration between the melt and liquid phases that remained and involved 1/ mixing between the residual (after degassing) alkali carbonate liquid and an F-rich carbonate melt and 2/ enrichment of the coexisting nephelinite melt in alkalis. We suggest that in the geological past similar processes were responsible for generating highly peralkaline silicate melts in continental rift tectonic settings worldwide.  相似文献   

16.
Melt composition control of Zr/Hf fractionation in magmatic processes   总被引:9,自引:0,他引:9  
Zircon (ZrSiO4) and hafnon (HfSiO4) solubilities in water-saturated granitic melts have been determined as a function of melt composition at 800° and 1035°C at 200 MPa. The solubilities of zircon and hafnon in metaluminous or peraluminous melts are orders of magnitude lower than in strongly peralkaline melt. Moreover, the molar ratio of zircon and hafnon solubility is a function of melt composition. Although the solubilities are nearly identical in peralkaline melts, zircon on a molar basis is up to five times more soluble than hafnon in peraluminous melts. Accordingly, calculated partition coefficients of Zr and Hf between zircon and melt are nearly equal for the peralkaline melts, whereas for metaluminous and peraluminous melts DHf/DZr for zircon is 0.5 to 0.2. Consequently, zircon fractionation will strongly decrease Zr/Hf in some granites, whereas it has little effect on the Zr/Hf ratio in alkaline melts or similar depolymerized melt compositions.The ratio of the molar solubilities of zircon and hafnon for a given melt composition, temperature, and pressure is proportional to the Hf/Zr activity coefficient ratio in the melt. The data imply that this ratio is nearly constant and probably close to unity for a wide range of peralkaline and similar depolymerized melts. However, it changes by a factor of two to five over a relatively small interval of melt compositions when a nearly fully polymerized melt structure is approached. For most ferromagnesian minerals in equilibrium with a depolymerized melt, DHf > DZr. Typical values of DHf/DZr range from 1.5 to 2.5 for clinopyroxene, amphibole, and titanite. Because of the change in the Hf/Zr activity ratio in the melt, the relative fractionation of Zr and Hf by these minerals will disappear or even be reversed when the melt composition approaches that of a metaluminous or peraluminous granite. It is thus not surprising that fractional crystallization of such granitic magmas leads to a decrease in Zr/Hf, whereas fractional crystallization of depolymerized melts tends to increase Zr/Hf. There is no need to invoke fluid metasomatism to explain these effects. Results demonstrate that for ions with identical charge and nearly identical radius, crystal chemistry does not alone determine relative compatibilities. Rather, the effect of changing activity coefficients in the melt may be comparable to or even larger than elastic strain effects in the crystal lattice.  相似文献   

17.
Several types of fluid immiscibility may affect the evolution of volatile-rich magmatic systems at the magmatic–hydrothermal transition. The topology of silicate–salt–H2O systems implies that three-fluid immiscibility (silicate melt+hydrosaline melt+vapour) should be stable in a broad range of compositions and PT conditions. The most important factor controlling the immiscibility appears to be the Coulombic properties (electric charges Z and ionic radii r) of the main network-modifying cations and the capacity for immiscibility appears to decrease in the following sequence: Mg>Ca>Sr>Ba>Li>Na>K. Liquid immiscibility is enhanced in peralkaline compositions and in the presence of nonsilicate anions such as F, Cl, CO32− and BO33−. In volatile-rich magmatic systems, the H2O is likely to react with the chloride, fluoride, borate and carbonate species and the chemical effects of high-temperature hydrolysis may be greatly enhanced by phase separation in systems with multiple immiscible fluid phases. Natural granitic magmas can thus exsolve a range of chemically and physically diverse hydrosaline liquids and the role of these fluid phases is likely to be especially significant in pegmatites and Li–F rare-metal granites.  相似文献   

18.
Composition, mean pressure, mean melt fraction, and crustalthickness of model mid-ocean ridge basalts (MORBs) are calculatedusing MELTS. Polybaric, isentropic batch and fractional meltsfrom ranges in source composition, potential temperature, andfinal melting pressure are integrated to represent idealizedpassive and active flow regimes. These MELTS-derived polybaricmodels are compared with other parameterizations; the resultsdiffer both in melt compositions, notably at small melt fractions,and in the solidus curve and melt productivity, as a resultof the self-consistent energy balance in MELTS. MELTS predictsa maximum mean melt fraction (  相似文献   

19.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   

20.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号