首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuum-subtracted dereddened images in the light of several atomic lines show the presence of an extended bipolar nebula surrounding η Carinae with size ∼100×45 arcsec2 (1.3×0.5 pc2). This feature is best delineated in [O  iii ] 5007. The geometrical disposition and mass of the shell suggest that it was formed by mass ejections from η Carinae. The dynamic age of the nebula is ∼13 000/ V 7 yr, where V 7 is the mean expansion velocity in 100 km s−1, and its mass is between 5 and 10 M. The nebula is photoionized and composed of unprocessed material. The major axes of the nebula and of the Homunculus are nearly perpendicular. We also report the discovery of elongated emission knots prominent in [N  ii ] located 64 to 100 arcsec away from η Carinae, which implies that they were ejected either centuries ago or at a more recent date but with extremely large velocities.  相似文献   

2.
This work presents the first integral field spectroscopy of the Homunculus nebula around η Carinae in the near-infrared spectral region ( J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and  6.0 × 1016  cm, respectively. We also mapped the blue-shifted component of He  i  λ10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc.
We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H  ii region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in η Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5  iii to O7  i . Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the 'Sr-filament' but they are obviously spatially separated, while the blue-shifted component of He  i λ10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.  相似文献   

3.
I argue that the large-scale departure from axisymmetry of the η Carinae nebula can be explained by the binary star model of η Carinae. The companion diverts the wind blown by the primary star, by accreting from the wind and possibly by blowing its own collimated fast wind (CFW). The effect of these processes depends on the orbital separation, and hence on the orbital phase of the eccentric orbit. The variation of the mass outflow from the binary system with the orbital phase leads to a large-scale departure from axisymmetry along the equatorial plane, as is observed in η Carinae. I further speculate that such a companion may have accreted a large fraction of the mass that was expelled in the Great Eruption of 1850 and the Lesser Eruption of 1890. The accretion process was likely to form an accretion disc, with the formation of a CFW, or jets, on the two sides of the accretion disc. The CFW may have played a crucial role in the formation of the two lobes.  相似文献   

4.
CK Vul is classified as, amongst others, the slowest known nova, a hibernating nova or a very late thermal pulse object. Following its eruption in ad 1670, the star remained visible for 2 yr. A 15-arcsec nebula was discovered in the 1980s, but the star itself has not been detected since the eruption. We here present radio images which reveal a 0.1-arcsec radio source with a flux of 1.5 mJy at 5 GHz. Deep Hα images show a bipolar nebula with a longest extension of 70 arcsec, with the previously known compact nebula at its waist. The emission-line ratios show that the gas is shock-ionized, at velocities  >100 km s−1  . Dust emission yields an envelope mass of  ∼5 × 10−2 M  . Echelle spectra indicate outflow velocities up to 360 km s−1. From a comparison of images obtained in 1991 and 2004 we find evidence for expansion of the nebula, consistent with an origin in the 1670 explosion; the measured expansion is centred on the radio source. No optical or infrared counterpart is found at the position of the radio source. The radio emission is interpreted as thermal free–free emission from gas with   T e∼ 104 K  . The radio source may be due to a remnant circumbinary disc, similar to those seen in some binary post-AGB stars. We discuss possible classifications of this unique outburst, including that of a sub-Chandrasekhar mass supernova, a nova eruption on a cool, low-mass white dwarf or a thermal pulse induced by accretion from a circumbinary disc.  相似文献   

5.
Spatially resolved, broad Hα line profiles from both the luminous blue variable star ε Carinae (ε Car) and the surrounding filamentary Car II ('Keyhole') nebula, where they have been scattered and reflected by dust, have been observed periodically from 1985 to 1997. The Hα line profiles from ε Car in this 12-yr period show some, albeit not dramatic, changes. The sharp and deep P Cygni-type absorption feature that was observed first in 1985 in the broad, scattered/reflected profiles from the surrounding Keyhole nebula is not present in any of the direct ε Car profiles. This distinctive feature is now shown to be spatially variable over the Keyhole nebula and most prominent along the direction of the axis of the bipolar Homunculus nebula at PA 132°. No evidence of any temporal variability of this sharp feature has been found in 12 yr of monitoring, even from the most well-defined scattering/reflecting cloud along PA 132°.
It is concluded that a 46°-wide cone of light from ε Car is relatively unobscured along the axis of the Homunculus nebula and that this must be the consequence of a dense torus close to the star.  相似文献   

6.
During the past decade, several observational and theoretical works have provided evidence of the binary nature of η Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, η Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of η Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind–wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of η Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of   i ∼ 60°± 10°  , and   i *∼ 35°± 10°  with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as  ∼−40°  , showing that periastron passage occurs shortly after conjunction.  相似文献   

7.
It is believed that η Carinae is actually a massive binary system, with the wind–wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of η Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face η Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of η Carinae forms an angle of  29°± 4°  with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about  5°  and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.  相似文献   

8.
We study the usage of the X-ray light curve, column density towards the hard X-ray source, and emission measure (density square times volume), of the massive binary system η Carinae to determine the orientation of its semimajor axis. The source of the hard X-ray emission is the shocked secondary wind. We argue that, by itself, the observed X-ray flux cannot teach us much about the orientation of the semimajor axis. Minor adjustment of some unknown parameters of the binary system allows to fit the X-ray light curve with almost any inclination angle and orientation. The column density and X-ray emission measure, on the other hand, impose strong constrains on the orientation. We improve our previous calculations and show that the column density is more compatible with an orientation where for most of the time the secondary – the hotter, less massive star – is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage. The 10-week X-ray deep minimum, which results from a large decrease in the emission measure, implies that the regular secondary wind is substantially suppressed during that period. This suppression is most likely resulted by accretion of mass from the dense wind of the primary luminous blue variable star. The accretion from the equatorial plane might lead to the formation of a polar outflow. We suggest that the polar outflow contributes to the soft X-ray emission during the X-ray minimum; the other source is the shocked secondary wind in the tail. The conclusion that accretion occurs at each periastron passage, every five and a half years, implies that accretion had occurred at a much higher rate during the Great Eruption of η Car in the 19th century. This has far reaching implications for major eruptions of luminous blue variable stars.  相似文献   

9.
We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptotic giant branch phase. Two regions within the optical nebula are clearly detected in non-thermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf–Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PN's slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned with any obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.  相似文献   

10.
We present Hα, [N  II ]6583 and 6-cm continuum images of the emission line nebula K 3-35. The optical images reveal an extended nebula (size ≃ 11 × 9 arcsec2 in [N  II ]) in which most of the emission originates in a very narrow (width 0.7–1.3 arcsec) S-shaped region which extends almost all along the nebula (≃ 7 arcsec). The 6-cm continuum emission also arises in this narrow region, which is characterized by an exceedingly high point-symmetry and systematic and continuous changes of the orientation with respect to the nebular centre. The properties of the narrow region suggest that it represents a system of precessing bipolar jet-like components. Two low-excitation, compact bipolar knots near the tips of the jet-like components are observed in the deduced [N  II ]/Hα image ratio. These knots may be generated by the interaction of the collimated outflows with surrounding material. A comparison of the optical and radio images shows the existence of differential extinction within the nebula. Maximum extinction is observed in a disc-like region which traces the equator of the elliptical shell previously observed at 20-cm continuum. All available data strongly suggest that K 3-35 is a very young planetary nebula in which we could be observing the first stages of the formation of collimated outflows and point-symmetric structures typically observed in planetary nebulae. The properties of the jet-like components in K 3-35 are in good agreement with models of binary central stars in which highly collimated outflows originate either from a precessing accretion disc or via magnetic collimation in a precessing star.  相似文献   

11.
We examine a binary merger model for the formation of the mysterious triple-ring nebula surrounding Supernova 1987A, which still has not been convincingly explained in detailed hydrodynamical calculations. During the merger of 15 and  5 M  binary systems, mass is ejected primarily at mid-latitudes for a sufficiently evolved primary, as demonstrated by Morris & Podsiadlowski. This material is swept up by the fast wind of the central star during its post-merger blue supergiant phase, leading to a density contrast of ∼150 in the outer rings at the time of the supernova. The equatorial ring probably formed later when the star contracted to become a blue supergiant. The asymmetry between the northern and southern outer rings can be explained by a 10 per cent asymmetry during the merger, perhaps due to a pulsational instability in the common envelope.
We present a parameter study from which we determine a mass-loss rate in the blue supergiant wind in the range  1.5–3 × 10−7 M yr−1  in agreement with previous estimates. The morphology of the best model is consistent with the well-known Hubble Space Telescope image at better than 5 per cent and is also in broad agreement with light-echo observations. The circumstellar environment on larger scales (up to 3 pc) is also investigated. We conclude with a brief discussion of the bipolar nebulae surrounding the Galactic stars, Sheridan 25, HD 168625 and η Carinae.  相似文献   

12.
The narrow optical filaments ('strings' or 'spikes') emerging from the Homunculus of η Carinae are modelled as resulting from the passage of ballistic 'bullets' of material through the dense circumstellar environment. In this explanation, the string is the decelerating flow of ablated gas from the bullet. An archive Hubble Space Telescope image and new forbidden-line profiles of the most distinct of the strings are presented and discussed in terms of this simple model.  相似文献   

13.
We have observed the Red Rectangle nebula with the Multi-Object Spectrograph on the WIYN telescope. Moderate-resolution spectra (Δ λ =0.4 Å) in the region of 5800 Å were obtained in 3-arcsec apertures at over 50 positions in the nebula. Accurate and precise wavelength calibrations were obtained against a thorium–argon lamp and the sodium lines in the sky and nebula. The peak position and full width at half-maximum of the 5800-Å Red Rectangle band (RRB) were measured to beyond 15 arcsec from the star. The shortest wavelength of the band is found to be 5799.10±0.15 Å in the rest frame of the nebula. None of the emission bands has intensity coincident with the wavelength of the diffuse interstellar band (DIB) at 5797.11±0.05 Å. The 2-Å offset cannot be explained by an instrumental, spectroscopic or photophysical effect. The hypothesis that the same molecule may be the carrier of the RRB and the DIB is contradicted by these observations. As a further test of the hypothesis, absorption has been sought that would be due to a potential DIB carrier in the nebula. Tentative evidence for absorption is found in the RRB spectra taken within 9 arcsec of the star; but any absorption has a peak position essentially coincident in wavelength with the band maximum of the emission band.  相似文献   

14.
Using the Planetary Camera on board the Hubble Space Telescope , we have measured the projected separation of the binary components in the nucleus of the planetary nebula Abell 35 to be larger than 0.08 arcsec but less than 0.14 arcsec. The system has been imaged in three filters centred at 2950, 3350 and 5785 Å. The white dwarf primary star responsible for ionizing the nebula is half as bright as its companion in the 2950-Å filter, causing the source to be visibly elongated. The 3350-Å setting, on the other hand, shows no elongation as a result of the more extreme flux ratio. The F300W data allow the determinination of the projected separation of the binary. At the minimum distance of 160 pc to the system, our result corresponds to 18 ± 5 au. This outcome is consistent with the wind accretion induced rapid rotation hypothesis, but cannot be reconciled with the binary having emerged from a common-envelope phase.  相似文献   

15.
We present 10-μm ISO -SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO -SWS spectrum reveals emission from highly ionized species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5 and 6.3 cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by ∼ 14 arcsec. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and non-thermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10 μm reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in comparison with prior radio observations of hot stars such as O and B supergiants and Wolf–Rayet stars, given the estimated distance to the cluster. An origin in a detatched shell of material around the central star is therefore suggested; however given the spatial extent of the emission, such a shell must be relatively young (τ ∼ 103 yr). The extended non-thermal emission associated with the M star Ara A is unexpected; to the best of our knowledge this is a unique phenomenon. SAX (2–10 keV) observations show no evidence of X-ray emission, which might be expected if a compact companion were present.  相似文献   

16.
Before the observation of the 1974 U Ori eruption, it was considered that the Mira stars had only some regular OH variations. With this eruption, we realized that sometimes flares can occur in this type of star. In the course of an OH Mira star monitoring programme with the Nançay radio telescope, we have discovered a new eruptive type of OH maser emission in several sources. Especially, in early 1992, we observed a quickly rising 1665 Mhz emission in the Mira X Oph. The main characteristics of this flare were: large flux variations independent of the light curve; large degree of circular polarization; radial velocity emission close to the stellar velocity.  相似文献   

17.
We have determined the spectral energy distribution at wavelengths between 6 cm and 850 μm for the prototypical S(stellar)-type symbiotic star, CI Cygni, during quiescence. Data were obtained simultaneously with the Very Large Array and the SCUBA submillimetre (sub-mm) camera on the James Clerk Maxwell Telescope. The data have allowed us to determine the free–free turnover frequency of the ionized component, facilitating a model-dependent estimate of the binary separation to compare with the known orbital parameters of CI Cyg and to critically test the known models for radio emission from symbiotic stars. In particular, our data rule out the two most popular models: ionization of the giant wind by Lyman continuum photons from its hot companion, and emission resulting from the interaction of winds from the two binary components.  相似文献   

18.
We have observed the energetic binary Cygnus X-3 in both quiescent and flaring states between 4 and 16 μm using the ISO satellite. We find that the quiescent source shows the thermal free–free spectrum typical of a hot, fast stellar wind, such as from a massive helium star. The quiescent mass-loss rate arising from a spherically symmetric, non-accelerating wind is found to be in the range (0.4–2.9)×10−4 M yr−1, consistent with other infrared and radio observations, but considerably larger than the 10−5 M yr−1 deduced from both the orbital change and the X-ray column density. There is rapid, large-amplitude flaring at 4.5 and 11.5 μm at the same time as enhanced radio and X-ray activity, with the infrared spectrum apparently becoming flatter in the flaring state. We believe that non-thermal processes are operating, perhaps along with enhanced thermal emission.  相似文献   

19.
The fast-spinning Crab pulsar (∼30 turn s−1), which powers the massive expansion and synchrotron emission of the entire Crab nebula, is surrounded by quasi-stationary features such as fibrous arc-like wisps and bright polar knots in the radial range of 2×1016≲ r ≲2×1017 cm, as revealed by high-resolution (∼0.1 arcsec) images from the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). The spin-down energy flux (∼5×1038 erg s−1) from the pulsar to the luminous outer nebula, which occupies the radial range 0.1≲ r ≲2 pc, is generally believed to be transported by a magnetized relativistic outflow of an electron–positron e± pair plasma. It is then puzzling that mysterious structures like wisps and knots, although intrinsically dynamic in synchrotron emission, remain quasi-stationary on time-scales of a few days to a week in the relativistic pulsar wind. Here we demonstrate that, as a result of slightly inhomogeneous wind streams emanating from the rotating pulsar, fast magnetohydrodynamic (MHD) shock waves are expected to appear in the pulsar wind at relevant radial distances in the forms of wisps and knots. While forward fast MHD shocks move outward with a speed close to the speed of light c , reverse fast MHD shocks may appear quasi-stationary in space under appropriate conditions. In addition, Alfvénic fluctuations in the shocked magnetized pulsar wind can effectively scatter synchrotron beams from gyrating relativistic electrons and positrons.  相似文献   

20.
We combine calibrated International Ultraviolet Explorer ( IUE ) archive data and new low-resolution optical data for the T Tauri star LkH α 264 covering the region from 1200 to 7000 Å. The UV continuum is well fitted by the combination of a blackbody at 4300 K plus hydrogenic free–free and free–bound emission from a dense plasma at 3.5×104 K plus the emission by a second blackbody. This last component is at T ≈8700 K and covers about 4 per cent of the stellar surface. We interpret this last component to be the result of emission from one or various hotspots. The interesting result is that this combined emission also fits the observed optical continuum well. We conclude that this star is an analogue of the Sun, however displaying a much higher level of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号