首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
主要从川滇块体东缘的地层分布和出露特征 ,以及岩浆活动等方面深入探讨块体东缘的活动构造及其它们的发育和演化过程  相似文献   

2.
主要从川滇块体东缘的地层分布和出露特征,以及岩浆活动等方面深入探讨块体东缘的活动构造及其它们的发育和演化过程。  相似文献   

3.
主要从川滇块体东缘的地层分布和出露特征,以及岩浆活动等方面深入探讨块体东缘的活动构造及其它们的发育和演化过程.  相似文献   

4.
川滇块体东边界主要断裂带现今运动特征分析   总被引:1,自引:1,他引:1       下载免费PDF全文
基于2009年以来的GPS观测数据,利用块体模型和GPS剖面方法分别计算川滇块体东边界主要断裂带的滑动速度,并结合跨断裂带的区域应变时间序列分析断裂带现今的运动特征。结果表明:从速度场变化来看,2013—2015期的速度场在川滇块体东北部有东向增加的微弱变化;从滑动速率结果来看,鲜水河北段的左旋走滑运动有所增强,拉张运动有所增加;小江断裂带的左旋走滑运动普遍有微弱的增强;从去掉线性的区域应变时间序列结果来看,小江断裂带南段主张应变在2014年底出现了趋势性转折,值得进一步关注。  相似文献   

5.
总结了30多年来川滇地区活动块体划分与现代构造应力场分区的主要研究认识,对二者之间的联系进行了初步讨论。对于川滇地区活动块体的划分,不同学者给出的宏观格局基本一致,但对其中一些次级块体的划分和边界断裂存在不同的认识。学者们对川滇地区现代构造应力场整体特征的认识较为一致,但对应力场的具体划分存在不同看法。川滇地区活动块体的划分格局基本确定了现代构造应力场的分区,但二者并不完全一致。开展这两方面的深入研究,对进一步认识川滇地区构造变形特征具有重要意义。  相似文献   

6.
川滇地区活动块体最新构造变动样式及其动力来源   总被引:86,自引:6,他引:86  
基于“活动块体”的基本概念,综合历史地表破裂型地震的空间分布、主干活动断裂和次级活动断裂的展布特征等,川滇地区可划分出4个一级块体:马尔康块体(Ⅰ)、川滇菱形块体(Ⅱ)、保山-普洱块体(Ⅲ)和密支那-西盟块体(Ⅳ)等;受次级北东向断裂的切割,川滇菱形块体(Ⅱ)可进一步划分为川西北(Ⅱ_1)和滇中(Ⅱ_2)2个次级块体,保山-普洱块体(Ⅲ)包括保山、景谷和勐腊等3个次级块体(Ⅲ_1,Ⅲ_2,Ⅲ_3)。通过断错地貌学的定量研究,厘定了川滇地区各级块体主干边界活动断裂的基本类型和长期滑动速率值;运用矢量分析的方法确定了块体的运动状态,并讨论了变形协调性问题,指出川滇地区各级块体运动是平移、转动和隆升等3种基本运动的复合或叠加,其中马尔康块体、川西北和滇中两个次级块体南东向或南南东向平移速率1~5mm/a,顺时针转动角速率1.4~4°/Ma,隆升速率1mm/a左右;保山-普洱和密支那-西盟两块体也发生过大规模的顺时针转动.它们是印度板块与欧亚板块碰撞、印度板块北移引起板块边缘或内部变形局部化和差异运动的应交响应。由于存在横向活动逆断裂带对东向或南东向平移分量的吸收和转换,青藏高原物质的向东逃逸量或挤出量是有限的,为“叠瓦状道冲转换-有限挤出模型”。  相似文献   

7.
从川滇块体东缘的地质构造应力场、地震形变带所反映的构造应力场,震源机制解所确定的应力场、地壳应力解除及地壳应力测量所反映的应场等方面的资料,对场体东缘地壳动力学问题进行了讨论,结果认为印度板块与欧亚板块的碰撞是川 滇块体东缘地壳动力的主要力源。  相似文献   

8.
作为青藏高原东南缘的川滇块体,变形剧烈,地震频发.川滇块体的侧向挤出滑移造成了东边界的左旋剪切变形,不同的地震学者利用不同的方法得出了重要的定量结果.大地测量技术特别是GPS技术的快速发展,为断裂带形变场研究提供了高精度的观测数据,也给研究断裂带动态变化特征及其动力学机制提供了动态观测资料约束.因此,有必要综合利用块体运动模型、断裂带本身的构造变形定量分析及数值模拟方法,给出鲜水河—安宁河—则木河—小江断裂带的运动特征及应变积累特性的定量结果.  相似文献   

9.
从川滇块体东缘的地质构造应力场、地震形变带所反映的构造应力场,震源机制解所确定的应力场、地壳应力解除及地壳应力测量所反映的应力场等方面的资料,对块体东缘地壳动力学问题进行了讨论,结果认为印度板块与欧亚板块的碰撞是川滇块体东缘地壳动力的主要力源.  相似文献   

10.
活动断裂的活动习性是认识活动断裂应变加载及释放随时间、空间变化的关键所在,也是研究区域运动学、动力学和科学评价地震危险性的重要基础。安宁河断裂、大凉山断裂与鲜水河断裂呈倒“Y”字形交于石棉一带,共同协调了鲜水河断裂向SE的应变传递,2022年鲜水河断裂磨西段发生了泸定MS6.8地震后,安宁河断裂和大凉山断裂的地震危险性再次引起了人们的关注。本文通过梳理分析这3条断裂相关的古地震和历史大地震资料,得出以下认识:(1)安宁河断裂和鲜水河断裂磨西段近4 000 a来的大地震平均复发间隔约为700 a,大凉山断裂则为524 a;(2)鲜水河断裂磨西段和安宁河断裂的古地震活动表现为丛集特征,大凉山断裂的古地震活动则表现为准周期特征;(3)近4 000 a来三条断裂在200 a时间窗内的大地震活动表现出准同步性,在时空上有相互影响的特征。  相似文献   

11.
Using a more realistic model of multi-layered viscoelastic media, and considering the effects of the coseismic dislocation and the postseismic viscoelastic relaxation caused by the 34 great earthquakes occurring along the eastern boundary of the Sichuan-Yunnan block since 1480 and the interseismic stress accumulation caused by the tectonic loading generated by plate motions which were modeled by introducing "virtual negative displacements" along the major fault segment in the region under study, we calculated the evolution of the Coulomb stress change in each fault plane of 18 major fault segments along the eastern boundary caused by the coseismic, postseismic and interseismic effects. We studied the interactions of the Xianshuihe, Anninghe, Zemuhe and Xiaojiang fault zones on the eastern boundary of the Sichuan-Yunnan block. By evaluating if the previous earthquake could bring another earthquake closer to or farther from failure, we analyzed the interactions of the earthquakes which occurred in the different segments in the same fault zone, or in the different fault zones respectively. And further based on the calculation results of the Coulomb stress change on the fault planes, we analyzed the seismic hazard of each fault segment.The results show that the previous earthquake may trigger another earthquake which can occur in the same fault zone or in the different fault zone. And the calculation results on the evolution of the cumulative Coulomb stress change in the each fault segment show that, the Coulomb stress increases significantly in the middle section and the Moxi segment of the Xianshuihe fault zone, the Mianning-Xichang segment of the Anninghe fault zone, the Qiaojia-dongchuan segment and the Jianshui segment of the Xiaojiang fault zone, and the seismic hazard in these fault segments is worthy paying attention to.  相似文献   

12.
This study is devoted to a systematic analysis of the stress state of the eastern boundary area of Sichuan-Yunnan block based on focal mechanisms of 319 earthquakes with magnitudes between M3.0 and M6.9, occurring from January 2009 to May 2018. We firstly determined the mechanism solutions of 234 earthquakes by the CAP method, using the broadband waveforms recorded by Chinese regional permanent networks, and collected 85 centroid moment tensor solutions from the GCMT. Then we investigated the regional stress regime through a damp linear inversion. Our results show that:1)the focal mechanisms of moderate earthquakes are regionally specific with three principal types of focal mechanisms:the strike-slip faulting type, the thrust faulting type and the normal faulting type. The strike-slip faulting type is significant in the eastern boundary area of Sichuan-Yunnan block along the Xianshuihe-Xiaojiang Fault, the Daliangshan Fault, and the Zhaotong-Lianfeng Fault. The thrust faulting type and the combined thrust/strike-slip faulting type are significant along the Mabian-Yanjin Fault, Ebian-Yanfeng Fault and the eastern section of Lianfeng Fault; 2)The most robust feature of the regional stress regime is that, the azimuth of principal compressive stress axis rotates clockwise from NWW to NW along the eastern boundary of Sichuan-Yunnan Block, and the clockwise rotation angle is about 50 degrees. Meanwhile, the angels between the principal compressive axis and the trend of eastern boundary of Sichuan-Yunnan Block remain unchanged, which implies a stable coefficient of fault friction in the eastern boundary fault zone of Sichuan-Yunnan Block. The movement of the upper crust in the southeastern Tibetan plateau is a relatively rigid clockwise rotation. On the whole, the Xianshuihe-Xiaojiang Fault is a small arc on the earth, and its Euler pole axis is at(21°N, 88°E). The Daliangshan Fault is surrounded by the Anninghe-Zemuhe Fault, which formed a closed diamond shape. When the Sichuan-Yunnan block rotates clockwise, the Daliangshan Fault locates in the outer of the arc, while the Anninghe-Zemuhe Fault is in the inward of the arc, and from the mechanical point of view, left-lateral sliding movement is more likely to occur on the Daliangshan Fault. Our results can be the evidence for the study on the "cut-off" function of the Daliangshan Fault based on the stress field background; 3)The regional stress regime of the eastern boundary faults zone of the Sichuan-Yunnan Block is the same as the south section of the Dalianshan Fault, and the focal mechanism results also reveal that the Dalianshan Fault is keeping left-lateral strike-slip. There may be the same tectonic stress field that controls the earthquake activities in the southern section of Daliangshan Fault and Zhaotong-Lianfeng Fault. The regional stress regime of Zhaodong-Lianfeng Fault is also the same with the Sichuan-Yunnan Block, which implies that the control effect of the SE movement of the Sichuan-Yunnan block may extend to Weining.  相似文献   

13.
川滇地区现代地壳运动速度场和活动块体模型研究   总被引:35,自引:9,他引:35       下载免费PDF全文
吕江宁  沈正康  王敏 《地震地质》2003,25(4):543-554
通过分析中国地壳运动观测网络的GPS数据得到川滇地区地壳水平运动速度场 ,由此划分活动块体并分析其运动特征。结果表明 :相对欧亚板块 ,滇中、雅江和中甸次级块体的顺时针转动速率分别为 0 37°± 0 16°/Ma ,0 84°± 0 39°/Ma和 0 90°± 0 39°/Ma ,造成块体间跨木里弧形断裂带约 3mm/a的SN向挤压、丽江 -大理断裂带约 4mm/a的EW向拉张和理塘断裂带约 6mm/a的近EW向拉张。鲜水河断裂带左旋走滑速率 8~ 10mm/a ,安宁河 -则木河 -小江断裂带左旋走滑 5~6mm/a。龙门山断裂带没有明显的地壳消减 ,而断裂带西北约 15 0km处有一形变速度阶跃带 ,右旋走滑速率 4~ 5mm/a。阶跃带两侧的岷山块体和阿坝地区逆时针转动速率分别为 0 13°± 0 0 8°/Ma和0 5 3°± 0 19°/Ma。鲜水河 -小江断裂带以南、以西地区 ,青藏高原物质的E向挤出和重力滑塌造成川滇块体东移 ,在东部相对稳定的华南地块的阻挡下 ,川滇块体沿鲜水河 -小江断裂带由东转向南运动 ,从而引起川滇块体内部各次级块体的顺时针转动  相似文献   

14.
川滇地块的震源力学机制、运动速率和活动方式   总被引:39,自引:3,他引:39       下载免费PDF全文
用 4 4 2次中强地震的震源机制解分析了川滇次级地块应力场的优势方向。使用 771次 3级左右地震的滑动角λ参数统计确定震源断层的错动方式 ,并用中强地震P波初动解的N轴仰角的统计分布结果得到的震源断层错动或滑动型式去佐证。拟合中强地震的矩张量速率式 ,计算了川滇次级地块各地震构造区的年均滑动速率 ,并进行比较。根据 1980— 2 0 0 1年川青地块、雅江地块和滇中地块边界断裂带跨断层短水准、短基线定期复测结果 ,分析了水平和垂向年均形变速率。川滇地块间的运动是不均匀的。川青地块的运动方向为SEE。雅江地块压应力场优势方向为SSE ,相对川青地块的运动速率更大。滇中地块承袭雅江地块的运动方向 ,略偏东。密支那滇西地块压应力场有 2组优势方向 ,存在向NE方向的推挤和SSE方向的逃逸 ,活动速率大  相似文献   

15.
青藏高原北部活动地块内部的活断层定量资料   总被引:5,自引:0,他引:5  
文中定义了祁连山活动地块的边界,列表给出了近十几年来在青藏高原北部活动地块内部的活断层定量资料。其内容主要包括:活断层的编号、名称、产状、主要的地质地貌标志、活动年代、断层分段、断层滑动速率、古地震及其年代、地震破裂带的主要特征等。这些资料表明:青藏高原北部活动地块的8级大地震集中在它的边界活断层上,断层的滑动速率都在5~12mm/a左右;7级左右的地震发生在其内部规模较小的断层上,断层的滑动速率都在1~3mm/a左右;青藏高原北部活动地块内部的活断层,可以将该活动地块划分为几个次级地块,这些次级活动地块以变形为主,没有发生旋转;我们的结果支持青藏高原"连续变形"的假说  相似文献   

16.
川滇南部地区活动地块划分与现今运动特征初析   总被引:30,自引:6,他引:30       下载免费PDF全文
根据近几年取得的新资料和当今有关活动地块的研究 ,提出划分川滇南部活动地块的思路、依据和具体方法 ,作者认为具有一定规模且其活动性延续至今的第四纪活动断裂是划分活动地块必需的首要边界条件。指出新生的腾冲 -景洪北北西带和大理 -楚雄北西西带在活动地块划分中的重要作用。根据断块边界断裂活动性质、运动方式和GPS资料等 ,分析讨论了各活动地块现今活动方式得出 :≥ 7级以上地震主要集中在Ⅰ级活动地块边界 ;6~ 7级地震主要集中发生在Ⅱ级活动地块边界上 ;Ⅲ级活动地块是强震发生的主要位置所在  相似文献   

17.
断块运动与活断层分段   总被引:3,自引:3,他引:3  
断层作为断块的边界,其活动特征和断块运动密切相关。通过分析断块运动类型与断层活动及其分段的关系,以及断块运动与构造障碍的关系,论述了断块运动研究在活断层分段中的作用  相似文献   

18.
薛丁 《高原地震》2007,19(4):16-19
以金沙江-红河边界带和反映地震活动空间集中度C值的结合为例,对基于活动地块边界带的测震学参数强震预测进行了探索,结果对丽江地震预测效果很好。这对边界带的地震危险性判定有某种参考价值。  相似文献   

19.
The current and conventional fault-crossing short baseline measurement has a relatively high precision, but its measurement arrays usually fail to or cannot completely span major active fault zones due to the short length of the baselines, which are only tens to 100 meters. GNSS measurement has relatively low resolution on near-fault deformation and hence is not suitable for monitoring those faults with low motion and deformation rates, due to sparse stations and relatively low accuracy of the GNSS observation. We recently built up two experimental sites on the eastern boundary of the active Sichuan-Yunnan block, one crossing the Daqing section of the Zemuhe Fault and the other crossing the Longshu section of the Zhaotong Fault, aiming to test the measurement of near-fault motion and deformation by using fault-crossing arrays of one-kilometer-long baselines. In this paper, from a three-year-long data set we firstly introduce the selection of the sites and the methods of the measurement. We then calculate and analyze the near-field displacement and strain of the two sites by using three hypothetical models, the rigid body, elastic and composed models, proposed by previous researchers. In the rigid body model, we assume that an observed fault is located between two rigid blocks and the observed variances in baseline lengths result from the relative motion of the blocks. In the elastic model, we assume that a fault deforms uniformly within the fault zone over which a baseline array spans, and in the array baselines in different directions may play roles as strainmeters whose observations allow us to calculate three components of near-fault horizontal strain. In the composed model, we assume that both displacement and strain are accumulated within the fault zone that a baseline array spans, and both contribute to the observed variances in baseline lengths. Our results show that, from the rigid body model, variations in horizontal fault-parallel displacement component of the Zemuhe Fault at the Daqing site fluctuate within 3mm without obvious tendencies. The displacement variation in the fault-normal component keeps dropping in 2015 and 2016 with a cumulative decrease of 6mm, reflecting transverse horizontal compression, and it turns to rise slightly(suggesting extension)in 2017. From the elastic model, the variation in horizontal fault-normal strain component of the fault at Daqing shows mainly compression, with an annual variation close to 10-5, and variations in the other two strain components are at the order of 10-6. For the Longshu Fault, the rigid-body displacement of the fault varies totally within a few millimeters, but shows a dextral strike-slip tendency that is consistent with the fault motion known from geological investigation, and the observed dextral-slip rate is about 0.7mm/a on average. The fault-parallel strain component of the Longshu Fault is compressional within 2×10-6, and the fault-normal strain component is mainly extensional. Restricted by the assumption of rigid-body model, we have to ignore homolateral deformation on either side of an observed fault and attribute such deformation to the fault displacement, resulting in an upper limit estimate of the fault displacement. The elastic model emphasizes more the deformation on an observed fault zone and may give us information about localizations of near-fault strain. The results of the two sites from the composed model suggest that it needs caution when using this model due to that big uncertainty would be introduced in solving relevant equations. Level surveying has also been carried out at the meantime at the two sites. The leveling series of the Daqing site fluctuates within 4mm and shows no tendency, meaning little vertical component of fault motion has been observed at this site; while, from the rigid-body model, the fault-normal motion shows transverse-horizontal compression of up to 6mm, indicating that the motion of the Zemuhe Fault at Daqing is dominantly horizontal. The leveling series of the Longshu site shows a variation with amplitude comparable with that observed from the baseline series here, suggesting a minor component of thrust faulting; while the baseline series of the same site do not present tendencies of fault-normal displacement. Since the steep-dip faults at the two sites are dominantly strike-slip in geological time scale, we ignore probable vertical movement temporarily. In addition, lengths of homolateral baselines on either side of the faults change somewhat over time, and this makes us consider the existence of minor faults on either side of the main faults. These probable minor faults may not reach to the surface and have not been identified through geological mapping; they might result in the observed variances in lengths of homolateral baselines, fortunately such variations are small relative to those in fault-crossing baselines. In summary, the fault-crossing measurement using arrays with one-kilometer-long baselines provides us information about near-fault movement and strain, and has a slightly higher resolution relative to current GNSS observation at similar time and space scales, and therefore this geodetic technology will be used until GNSS networks with dense near-fault stations are available in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号