共查询到20条相似文献,搜索用时 12 毫秒
1.
N. J. Pawar 《Journal of the Geological Society of India》2016,87(4):499-499
2.
3.
4.
5.
6.
7.
8.
9.
《International Geology Review》2012,54(16):2065-2066
ABSTRACTMetasedimentary rocks from the El Triunfo Complex (Jocote Unit) in the southern Chiapas Massif (SE México) are constituted mainly by sillimanite-rich micaschist, locally intercalated with marble and calc-silicate rocks. Mafic rocks (now amphibolite) intruded the sequence prior to deformation and folding. Peak metamorphic conditions are estimated by geothermobaromerty at ~6.0 kbar and ~650ºC. The timing of the metamorphic event is dated by LA-MC-ICPMS analysis on zircon rims at 438+23/–12 Ma. Furthermore, detrital zircon grains yield mainly Stenian–Tonian and minor early Mesoproterozoic ages, indicating provenance from Grenville-type orogens (such as Oaxaquia) and some older cratonic sources. The 87Sr/86Sr values of 0.70775–0.70777 and the δ13C values from +1.9‰ to +2.7‰ in associated calcite marble define the time of deposition between 600 and 580 Ma. Geochemical markers from metapelite samples (such as La/Th > 3.94, La/Sc > 3.72, Th/U > 8.19, Th/Co > 0.42 and CIA = 74 to 83), as well as Sm–Nd isotope data (εNdi = ?8.1 to ?4.0, TDM(Nd) = 1.65–1.32 Ga) suggest weathering of Mesoproterozoic felsic rocks during temperate to warm climate. Furthermore, Zr/Sc values (9.1–21.0), chondrite-normalized REE patterns [La/Yb]N = 10.3–23.3, Eu/Eu* < 0.64), and ΔHf values (1.98–10.02) are indicative of pelagic and zircon-depleted sediments of a passive margin. The results suggest that the Jocote Unit was deposited during the opening of the Eastern Iapetus Ocean in the Ediacaran Period. This is the first evidence for Rodinia breakup in southern México. Besides that, the Ordovician tectonothermal event is probably related to compression during subduction and accretion along the western margin of Gondwana. 相似文献
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Heinz Mühlenbein 《Estuaries and Coasts》2010,33(2):223-223
Dedication
Peter G. Verity (1953–2009) 相似文献20.
During their spring migration, Atlantic herring (Clupea harengus) populations in the Baltic Sea rely on shallow transitional waters, such as estuaries, bays, and lagoons for spawning. Such inshore spawning grounds are ecologically important by providing suitable substrates for demersal egg deposition. These habitats are often highly impacted by multiple anthropogenic threats. Decades of eutrophication have caused a decline in depth distribution of submerged aquatic vegetation, the main herring spawning substrate in the Baltic Sea. Nowadays, spawning beds are limited to the shallow littoral zone (≤3 m depth). Accordingly, macrophytes are increasingly exposed to mechanic forcing due to storm-induced wave action. Generally, reproductive success and year class strength of the Western Baltic herring population is strongly determined by the survival of early life stages such as eggs and larvae in local nursery areas. However, explicit mechanisms by which local stressors might affect overall recruitment are currently not well understood. Hypothesizing that aquatic vegetation limited by water depth causes high herring egg mortality due to increased exposure to storm-induced hydrodynamics, we performed a combination of field studies investigating the impact of storm events on herring egg loss. Results of an egg loss experiment revealed a total egg loss of 29% in one single spawning bed during a storm event within the spawning season and the quantification of eggs attached to macrophyte litter on the shoreline emphasize the potential for regional weather extremes such as storm events to act as influential stressors for herring reproduction. 相似文献