首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Trace element distribution in titanite overgrowths on rutile has been investigated experimentally at 600?°C, 400?MPa and fO2 near NiNiO buffer. Compositionally homogenous Cr- or Nb-doped synthetic rutile single crystals or Nb-containing natural rutile crystals were the source of Cr, Nb and Ti to synthesize titanite using the double-capsule technique. All element exchange with the source of Si, Ca and Al occurred via a NaCl–H2O fluid. Titanite forms quickly and exclusively around the rutile crystals. The titanite overgrowth separates rutile from the bulk fluid, and all elements from rutile dissolution have to pass through the titanite rim. Trace element concentrations in titanite show a considerable scatter in experiments with and without Al, although the average concentrations of Cr or Nb of titanite around compositionally homogeneous synthetic rutile approach the expected values for closed system conditions. Variability of Al with Cr or Nb in the titanite is not correlated. The Al zoning is irregular and patchy, and also the distribution of trace elements does not show systematic trends in the spatial distribution. In experiments using zoned natural rutile, the concentrations of Nb in titanite are related to the Nb zoning in rutile, but the contents also vary unsystematically. Under the controlled conditions of the experiment, the explanation for the strongly irregular spatial distribution is most likely due to variations in elemental concentrations during transport from the rutile along the titanite grain boundaries. The transport pathway is complex because grain boundary migration is important during titanite growth. Such irregular element distribution is also found in a natural sample of titanite overgrowth on rutile from an eclogite with retrograde overprint in the amphibolite facies. Transport of Ti and trace elements was focused on grain boundaries and shielded from the rutile as a source of these elements. We conclude that this type of zoning is not related to changes in P–T or composition in an open system, but solely controlled by transport in and through the titanite rim.  相似文献   

2.
The formation of titanite coronae after rutile is common in retrograde high-to ultrahigh-pressure meta-mafic rocks, which provides a good opportunity to address the geochemical behavior of HFSE in crustal environments. In the Sumdo eclogite, titanite occurs either as a corona around rutile grains or as semi-continuous veins cross-cutting the major foliation, whereas rutile grains occur either as inclusions in garnet or omphacite or as a relict core surrounded by titanite. Textural relationships ...  相似文献   

3.
Eclogites occur as a tectonic slice within a metabasite-phyllite-marble unit of the Karakaya Complex in northwest Turkey. The high-pressure mineral assemblage in eclogite is mainly composed of garnet + omphacite + glaucophane + epidote + quartz. Trace element characteristics of rutile and Zr-in-rutile temperatures were determined for eclogites from the Karakaya Complex. Core-rim analyses of rutile grains yield remarkable trace element zoning with lower contents of Zr, Nb and Ta in the core than in the rim. The variations in Zr, Nb and Ta can be ascribed to growth zoning rather than diffusion effects. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents, which could be ascribed to the effect of metamorphic dehydration in subduction zones on rutile Nb/Ta differentiation. The rutile grains from eclogites in the Karakaya Complex are dominated by subchondritic Nb/Ta and Zr/Hf ratios. It can be noted that subchondritic Nb/Ta may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration.The Zr contents of all rutile grains range between 81 and 160 ppm with an average of 123 ppm. The Zr-in-rutile thermometry yields temperatures of 559–604 °C with an average temperature of 585 °C for eclogites from the Karakaya Complex. This average temperature suggests growth temperature of rutile before peak pressure during the subduction. However, some rutile grains have higher Zr contents in the outermost rims compared to the core. Zr-in-rutile temperatures of the rims are about 20 °C higher than those of the cores. This suggests that the outermost rims would have grown from a distinct fluid at higher temperatures than that of the cores. Moreover, Zr contents and calculated temperatures in both inclusion rutile and matrix rutile from eclogites are identical, which suggests that eclogites within the Karakaya Complex belong to the same tectonic slice and underwent similar metamorphic evolution.  相似文献   

4.
Field evidence from the western Tianshan subduction complex in northwestern China indicates that the high field strength elements Ti, Nb, and Ta were mobilized and thereby fractionated from Zr and Hf during the dehydration process that transformed blueschist into eclogite. Both a segregation with a depletion halo, thought to represent initial mobilization during dehydration, and a transport vein, indicative of the long distance transport were investigated. In each case, centimeter-sized rutile grains grew as needle-like crystals in the segregation and as prismatic crystals in the vein. Within the host rock of the segregation, the Ti contents of garnet and omphacite, the modal abundances of rutile and titanite and the bulk rock Ti, Nb, and Ta contents decrease towards the segregation. These observations are consistent with transport of Ti, Nb, and Ta from the host rock into the segregation. Textural and geochemical data for the eclogite-facies vein minerals indicate that Ti-Nb-Ta-rich fluids were transported over long-distances (at minimum meter-scale) during fracture-controlled fluid flow. Complex forming ligands (e.g., Na-Si-Al polymers and F) may have enhanced the solubility of Ti, Nb, and Ta in the fluid. Changes in fluid composition (e.g., XCO2) may both precipitate rutile and fractionate Ti, Nb, and Ta from LILE and REE.  相似文献   

5.
金红石边缘形成榍石冠状边结构在变质中-基性岩中普遍存在,是金红石与退变质流体携带的SiO_2与CaO作用的结果,反应形成的榍石微量元素特征受到金红石和流体的共同影响。雅鲁藏布江缝合带中角闪岩LZ06-04在抬升过程经历近等温降压退变质作用,石榴子石分解导致同一样品中含石榴子石部分与不含石榴子石部分的退变质流体成分的差异。两种流体分别与金红石反应,对应形成的榍石具有相似的Nb、Ta含量和Nb/Ta比值特征,但截然不同的REE特征。榍石的Nb、Ta来源于金红石,残余金红石与含水流体再平衡Nb、Ta的分配系数增大,且D_(Nb)~(Rt/Fluid)≥D_(Ta)~(Rt/Fluid);虽然Nb和Ta在含水流体中都表现为不活动元素,但相对于Nb,Ta在含水流体中活动性较高。榍石的Zr-Hf体系特征受到锆石、石榴子石等矿物的综合影响,并且Zr-Hf在含水流体中表现出比Nb-Ta更高的活动性。榍石的REE特征受流体中REE特征、榍石与流体配分系数以及共生矿物的影响。在岩浆或变质体系,榍石形成过程中,REE富集矿物(如石榴子石、锆石、褐帘石、独居石、磷灰石等)形成或分解将影响榍石的REE分布特征或形成REE环带结构。含水流体中金红石退变质形成榍石反应的进行受流体中TiO_2、CaO和SiO_2活度的影响。因此榍石常见于钙碱性岩浆岩、富Ca基性变质岩和矽卡岩中。流体中CaO活度的变化影响榍石的形成,进而影响Ti、Nb、Ta在流体中的运移能力。俯冲板片产生流体在交代上覆富Ca地幔楔物质过程中形成榍石残留同样可以造成部分熔融体具有亏损HFSE特征。  相似文献   

6.
Trace element distribution in Central Dabie eclogites   总被引:16,自引:0,他引:16  
Coesite-bearing eclogites from Dabieshan (central China) have been studied by ion microprobe to provide information on trace element distributions in meta-basaltic mineral assemblages during high-pressure metamorphism. The primary mineralogy (eclogite facies) appears to have been garnet and omphacite, usually with coesite, phengite and dolomite, together with high-alumina titanite or rutile, or both titanite and rutile; kyanite also occurs occasionally as an apparently primary phase. It is probable that there was some development of quartz, epidote and apatite whilst the rock remained in the eclogite facies. A later amphibolite facies overprint led to partial replacement of some minerals and particularly symplectitic development after omphacite. They vary from very fine-grained dusty-looking to coarser grained Am + Di + Pl symplectites. The eclogite facies minerals show consistent trace element compositions and partition coefficients indicative of mutual equilibrium. Titanite, epidote and apatite all show high concentrations of REE relative to clinopyroxene. The compositions of secondary (amphibolite facies) minerals are clearly controlled by local rather than whole-rock equilibrium, with the composition of amphibole in particular depending on whether it is replacing clinopyroxene or garnet. REE partition coefficients for Cpx/Grt show a dependence on the Ca content of the host phases, with D REE Cpx/Grt decreasing with decreasing D Ca . This behaviour is very similar to that seen in mantle eclogites, despite differences in estimated temperatures of formation of 650–850 °C (Dabieshan) and 1000–1200 °C (mantle eclogites). With the exception of HREE in garnet, trace elements in the eclogites are strongly distributed in favour of minor or accessory phases. In particular, titanite and rutile strongly concentrate Nb and Zr, whilst LREE–MREE go largely into epidote, titanite and apatite. If these minor/accessory minerals behave in a refractory manner during melting or fluid mobilisation events and do not contribute to the melt/fluid, then the resultant melts and fluids will be strongly depleted in LREE–MREE. Received: 11 February 1999 / Accepted: 31 January 2000  相似文献   

7.
This paper reports detailed analyses of Nb and Ta concentrations of 19 eclogite samples and their principal mineral constituents from the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD) and nearby outcrops. We observe highly fractionated and overall suprachondritic Nb/Ta values in minerals, e.g., rutile (4.8–87), titanite (12–62) and amphibole (2.0–67). Amphiboles in amphibolites (retrograded from eclogite) can be classified into two groups: a low Nb/Ta group that bears higher Al contents and is thus of higher pressure origin, and a high Nb/Ta, lower pressure group. The former group was likely formed during subduction; the latter may have formed during exhumation in the presence of rutile and titanite. The significant Nb/Ta fractionation in rutile and other minerals may reflect early dehydration of the subducted slab at shallow depths before the formation of rutile, which occurs at depths ≥50 km. The dehydration, with amphiboles existing as the main Nb–Ta-bearing phase, would lead to Nb/Ta fractionation, i.e., forming subchondritic Nb/Ta ratios in the released fluids and, complementarily, suprachondritic Nb/Ta ratios in the residual phases. While a large proportion of the fluids may escape from the slab to the mantle wedge, considerable amounts of the fluids can be retained in hydrous minerals within the descending slab, thus forming hydrated cold eclogites with subchondritic Nb/Ta characteristics. As subduction continues to depths over 50 km, rutile appears and consequently controls the Nb–Ta budget. In the presence of rutile, melting of the hydrated cold eclogites with very low Nb/Ta ratios would form magmas with negative Nb, Ta anomalies and subchondritic Nb/Ta. Further dehydration of the continuously descending slab results in even more fractionated Nb/Ta ratios in subsequently released fluids and residues, providing a feasible explanation for the large Nb/Ta variation observed in the modern arc magmas and residual eclogites.  相似文献   

8.
High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.  相似文献   

9.
中国大陆科学钻探主孔0-4500米的岩心主要由榴辉岩、斜长角闪岩、副片麻岩、正片麻岩以及少量的超基性岩所组成。岩相学研究结果表明,榴辉岩的围岩普遍经历了强烈角闪岩相退变质作用的改造,峰期超高压变质的矿物组合已完全被后期退变质过程中角闪岩相矿物组合所替代。采用激光拉曼技术,配备电子探针和阴极发光测试,发现主孔224件岩心中有121件(包括榴辉岩、斜长角闪岩、副片麻岩和正片麻岩)样品的锆石中普遍隐藏以柯石英为代表的超高压矿物包体,且不同岩石类型锆石中所保存的超高压矿物包体组合存在明显差异。(含多硅白云母)金红石石英榴辉岩锆石中保存的典型超高压包体矿物组合为柯石英 石榴石、柯石英 石榴石 绿辉石 金红石和柯石英 多硅白云母 磷灰石。黑云绿帘斜长角闪岩锆石中保存的超高压矿物组合为柯石英 石榴石 绿辉石、柯石英 石榴石 多硅白云母和柯石英 绿辉石 金红石,与榴辉岩所保存的超高压矿物组合十分相似,表明该类斜长角闪岩是由超高压榴辉岩在构造折返过程中退变质而成。在副片麻岩类岩石,如石榴绿帘黑云二长片麻岩锆石中,代表性的超高压包体矿物组合为柯石英 多硅白云母和柯石英 石榴石等;而在石榴黑云角闪钠长片麻岩锆石中,则保存柯石英 硬玉 石榴石 磷灰石、柯石英 硬玉 多硅白云母 磷灰石和柯石英 石榴石 磷灰石等超高压矿物包体。在正片麻岩锆石中,标志性的超高压矿物包体为柯石英、柯石英 多硅白云母、柯石英 蓝晶石 磷灰石和柯石英 蓝晶石 榍石等。此外,在南苏鲁东海至临沭一带的地表露头以及一系列卫星孔岩心的锆石中,也普遍发现以柯石英为代表的标志性超高压矿物包体,表明在南苏鲁地区由榴辉岩及其围岩的原岩所组成的巨量陆壳物质(方圆>5000km2,厚度超过4.5km)曾整体发生深俯冲,并经历了超高压变质作用。该项研究对于重塑苏鲁-大别超高压变质带俯冲-折返的动力学模式有着重要的科学意义。  相似文献   

10.
The petrogenetic relations among Ti‐rich minerals in high‐grade metabasites is illuminated here through a detailed petrological investigation of an anatectic garnet–clinopyroxene granulite from the Grenville Province, Ontario, Canada containing rutile, titanite and ilmenite in distinct microtextural settings. Garnet porphyroblasts exhibit zoned Ti concentrations (up to 0.15 wt% TiO2 in their cores), as well as a variety of rutile inclusion types, including clusters of small, variably elongate grains and thin (≤1 μm) oriented needles. Calcite inclusions in garnet, commonly observed surrounding garnet cores containing quartz and clinozoisite, indicate the presence of evolving C–O–H fluids during garnet growth and suggest that the rutile clusters may have formed from subsequent Ti diffusion and rutile precipitation within existing fluid inclusions. Titanite forms large subhedral crystals and typically occurs where the primary garnet–clinopyroxene assemblage is in contact with leucosome containing megacrystic hornblende, silvialitic scapolite and calcic plagioclase. Many titanite crystals exhibit marginal subgrains that correspond with sharp changes in their major and trace element composition, likely related to a dissolution–precipitation or recrystallization process following primary crystallization. Clinopyroxene–ilmenite symplectite coronas surround titanite in most locations, likely forming from reaction with the hornblende‐plagioclase matrix (±fluids/melt). Integration of multi‐equilibria thermobarometry and Zr thermometry in rutile and titanite with phase equilibrium modelling allows definition of a clockwise P–T path evolving to peak pressures of ~1.5 GPa at ~750°C during garnet and rutile growth, followed by peak temperature conditions of ~1.2 GPa and ~820–880°C associated with melt‐present titanite growth, and finally cooling and decompression to regional amphibolite facies conditions (~1.0 GPa and ~750°C) associated with the formation of clinopyroxene–ilmenite symplectites surrounding titanite. P–T pseudosections calculated for the pristine (leucosome‐ and titanite ‐free) metabasite bulk composition reproduce much of the prograde phase relations, but predict rutile as the stable Ti‐rich mineral at the peak thermal conditions associated with melt‐present titanite growth. The PM(CaO) and TM(CaO) models show that bulk CaO concentrations have a significant effect on the stability ranges of titanite and rutile. Increased bulk CaO tends to stabilize titanite to higher pressure and temperature at the expense of rutile, with a ≥15% increase in CaO producing the observed titanite‐bearing assemblage at high‐P granulite facies conditions. Thus, the model results are consistent with the textural observations, which suggest that titanite stability is associated with a chemical exchange between the host metabasite and a Ca‐rich melt.  相似文献   

11.
The geochemical and isotopic characterization of an eclogite and the associated retrogressive amphibolite at Vårdalsneset, WGR, Norwegian Caledonide was undertaken to investigate the mobility of REE and Hf and the behavior of Lu–Hf and Sm–Nd geochronometers during metamorphic dehydration/rehydration. Eclogitic garnets display a distinct core–rim chemical zoning. Thermodynamic modeling indicates that both cores (13–22 kbar, 500–580°C) and rims (>16 kbar, 610–660°C) crystallized under eclogite-facies conditions. The core–rim zoning corresponds to the dehydration of the system. This petrographic disequilibrium is associated with Lu–Hf and Sm–Nd disequilibrium, which prevents dating of the eclogitic stages. At the rock scale, the incoming fluid responsible for eclogite–amphibolite retrogression brought in Sm and Nd, leached Lu, and had no influence on Hf. At the grain scale, mass balance shows that Sm and Nd were stored in clinozoisite since the first eclogitic stage, whereas Lu and Hf, which were more thoroughly redistributed among minerals during retrogression, enable the dating of the amphibolitic facies at 378 ± 17 Ma.  相似文献   

12.
The oxygen isotope compositions of eclogite and amphibolite garnets from Franciscan Complex high-grade blocks and actinolite rinds encasing the blocks were determined to place constraints on their fluid histories. SIMS oxygen isotope analysis of single garnets from five eclogite blocks from three localities (Ring Mountain, Mount Hamilton, and Jenner Beach) shows an abrupt decrease in the δ18O value by ~1–3 ‰ from core to rim at a distance of ~120 ± 50 μm from the rim in nine out of the 12 garnets analyzed. In contrast, amphibolite garnets from one block (Ring Mountain) analyzed show a gradual increase in δ18O value from core to rim, implying a different history from that of the eclogite blocks. Values of δ18O in eclogite garnet cores range from 5.7 to 11.6 ‰, preserving the composition of the eclogite protolith. The abrupt decrease in the δ18O values of the garnet rims to values ranging from 3.2 to 11.2 ‰ suggests interaction with a lower δ18O fluid during the final stages of growth during eclogite facies metamorphism (450–600 °C). We hypothesize that this fluid is sourced from the serpentinized mantle wedge. High Mg, Ni, and Cr contents of actinolite rinds encasing the blocks also support interaction with ultramafic rock. Oxygen isotope thermometry using chlorite and phengite versus actinolite of rinds suggests temperatures of 185–240 °C at Ring Mountain and Mount Hamilton. Rind formation temperatures together with the lower δ18O garnet rims suggest that the blocks were in contact with ultramafic rock from the end of garnet growth through low-temperature retrogression. We suggest a tectonic model in which oceanic crust is subducted at the initiation of subduction and becomes embedded in the overlying mantle wedge. As subduction continues, metasomatic exchange between high-grade blocks and surrounding ultramafic rock is recorded in low δ18O garnet rims, and later as temperatures decrease, with rind formation.  相似文献   

13.
陈意  陈思  苏斌  李仪兵  郭顺 《地球科学》2018,43(1):127-149
麻粒岩是研究地壳演化最重要的变质岩类,金红石作为麻粒岩中常见的副矿物之一,深入探究其微量元素体系特点,可为大陆地壳演化研究提供新的视角.根据麻粒岩金红石的基础数据(显微结构、微量元素、离子替换方式)以及地壳常见造岩矿物的微量元素特点,初步探讨了麻粒岩变质过程中微量元素行为和扩散效应.麻粒岩金红石Zr含量可记录不同阶段的变质温度,但次生锆石和钛铁矿可对其Zr含量有较大影响,作为孤立体系(不与锆石和石英平衡)的金红石不能用于温度计算;金红石Nb、Ta、Cr和V不仅受全岩成分控制,还与变质过程中黑云母、钛铁矿、蓝晶石等矿物的形成和分解紧密相关;金红石与富Fe矿物之间有强烈的Fe扩散效应.深入理解麻粒岩变质过程中金红石微量元素行为,可为限定大陆地壳变质演化和动力学过程提供重要的矿物学信息.   相似文献   

14.
U–Pb and Rb–Sr dating was undertaken in combination with P–T estimates to (1) constrain the time of ultrahigh-pressure (UHP) eclogite formation in the Stadlandet UHP province of Norway, (2) date later crustal melting–migmatization of the eclogite country gneisses, and (3) temporally trace post-migmatite cooling and retrogression under amphibolite facies metamorphic conditions. In contrast to earlier U–Pb studies which used accessory minerals from the gneisses, we focused on the direct dating of minerals defining the HP assemblage. For the eclogite, rutile and omphacite fractions were analyzed for U–Pb, and from an adjacent migmatite leucosome titanites and K-feldspar. For Rb–Sr dating, phengite was measured for the eclogite, and biotite for two leucosome layers of the migmatite–eclogite complex. A U–Pb age of 389±7 (2σ) Ma is obtained if the full set of 12 rutile and five omphacite analyses is regressed (MSWD: 16), and 389±2 Ma for those nine data which strictly satisfy isochron conditions (MSWD: 0.78). The 389-Ma age is interpreted to date equilibration and freezing of the eclogite paragenesis at maximum temperatures of 770 °C, reached during decompression to 1.8 GPa. Decompression from 2.8 to 1.8 GPa occurred in the partial melting domain of granitic crust, with the migmatites being dated at 375±6 Ma by titanite and K-feldspar from an eclogite-adjacent granitic leucosome. This titanite age also shows that the U–Pb chronometer in rutile is very robust to high temperatures—it remained a closed system for at least 14 million years, at temperatures in excess to 650 °C. After decompression and migmatization, exhumation is accompanied by rapid cooling to reach the 300 °C isograde by 357± 9 Ma, determined by a biotite isochron for a leucosome in a slightly shallower structural level. In considering that the time of maximum pressure is bracketed by early zircon crystallization during subduction and later omphacite–rutile equilibration in the eclogites, an exhumation rate of 5 mm/year is deduced for initial exhumation, occurring between 394 and 389 Ma. For subsequent cooling from 770 to 600 °C, we obtain a rate of 2.3±1.3 mm/year. First stages of exhumation most likely occurred under an overall compressional regime, whereas Devonian basin formation is associated to detachment movements during 389–375 Ma exhumation. This period of extension is followed by a much younger, decoupled thermal phase at 327±5 Ma, occurring under static conditions within very restricted zones, most likely in association with the circulation of fluid phases along old discontinuities. Initial isotopic signatures of Sr and Pb substantiate Paleo- to Meso-Proterozoic crust formation times of the Stadlandet UHP province precursor lithologies.  相似文献   

15.
向华  张利  钟增球  周汉文  曾雯 《地球科学进展》2007,23(12):1258-1267
榍石在各类岩石中普遍存在,其稳定性受全岩成分、氧逸度和水活度以及温度和压力等因素影响。它在岩浆岩中主要存在于高Ca/Al比值的岩石中,在变质岩中常见于绿片岩相、蓝片岩相和角闪岩相岩石,在钙质变质岩中其稳定范围可达榴辉岩相或高压麻粒岩相。一般榍石结构中U含量较高,且具有高达高角闪岩相上限的U Pb同位素体系封闭温度,是理想的U-Pb定年矿物。由于榍石的组成元素均为岩石中的主要元素,很容易与其它矿物、熔体及流体发生反应,所以榍石的U-Pb年龄记录的更可能是结晶年龄,而不是简单的扩散重置年龄;也因为它容易反应,变质榍石复杂的U Pb体系可能记录了岩石的整个变质历史信息。通过与榍石平衡共生的矿物组合或利用榍石Zr温压计可确定岩石的P T条件,结合相关的榍石年龄信息即可建立变质过程的P T t轨迹。利用SHRIMP、LA MC ICP MS以及LA ICP MS方法可对不均一榍石颗粒内部进行原位微区分析得到有意义的U Pb年龄;利用榍石中Zr含量对温度,尤其是对压力比较敏感,可建立榍石Zr含量温压计。  相似文献   

16.
Core rocks recovered from the main hole (5158 m deep) of the Chinese Continental Scientific Drilling (CCSD‐MH) project, southern Sulu UHP terrane, east‐central China, consist of eclogites, various gneisses and minor metaperidotite cumulates; this lithological section underwent subduction‐zone UHP metamorphism. Coesite‐bearing eclogites are mainly present between the depths of 100–2000 m, but below 2000 m, mafic eclogites are rare. Selected elements (Zr, Nb, Cr, Fe, Si, Mg, Al & Ti) in rutile from 39 eclogite cores from 100 to 2774 m, and major elements of minerals from representative eclogites were analysed by electron microprobe. Zirconium and Nb concentrations of rutile cluster ~100–400 and 200–700 ppm respectively. However, Zr and Nb contents in rutile from strongly retrograded eclogites show larger variations than those of fresh or less retrograded eclogites, implying that somehow fluid infiltration affected rutile chemistry during retrograde metamorphism. Zr contents in rutile inclusions in garnet and omphacite are slightly lower than those of the matrix rutile, suggesting that the rutile inclusions formed before or close to the peak temperature. The P–T conditions of the CCSD‐MH eclogites were estimated by both Fe–Mg exchange and Zr‐in‐rutile thermometers, as well as by the Grt–Cpx–Phn–Ky geothermobarometer. The maximum temperature range of 700–811 °C calculated at 40 kbar using the Zr‐in‐rutile thermometer is comparable with temperature estimates by the Fe–Mg exchange thermometer. The temperature estimates of eclogites in a ~3000 m thick section define a continuous gradient, and do not show a distinct temperature gap, suggesting that the rocks from 100 to 3000 m depth might belong to a single, large‐scale UHP slab. These data combined with P–T calculations for CCSD‐MH peridotites yield a low geotherm (~5 °C km?1) for the Triassic subduction zone between the Sino‐Korean and Yangtze cratons; it lies ~30–35 mW m?2 conductive model geotherm.  相似文献   

17.
The metabasites of Chadegan, including eclogite, garnet amphibolite and amphibolite, are forming a part of Sanandaj–Sirjan Zone. These rocks have formed during the subduction of the Neo–Tethys ocean crust under Iranian plate. This subduction resulted in a subduction metamorphism under high pressuremedium temperature of eclogite and amphibolites facies condition. Then the metamorphic rocks were exhumed during the continental collision between the Afro–Arabian continent and the Iranian microcontinent. In the metabasite rocks, with typical MORB composition, garnet preserved a compositional zoning occurred during metamorphism. The magnesium (XMg) gradually increases from core to rim of garnets, while the manganese (XMn) decreases towards the rim. Chondrite–normalized Rare Earth Element patterns for these garnets exhibit core–to–rim increases in Light Rare Earth Elements. The chondrite–normalized REE patterns of garnets, amphiboles and pyroxenes display positive trend from LREEs to Heavy Rare Earth Elements (especially in garnet), which suggests the role of these minerals as the major controller of HREE distribution. The geochemical features show that the studied eclogite and associated rocks have a MORB origin, and probably formed in a deep–seated subduction channel environment. The geothermometry estimation yields average pressure of ~22 kbar and temperature of 470–520°C for eclogite fomation. The thermobarometry results gave T = 650–700°C and P ≈ 10–11 kbar for amphibolite facies.  相似文献   

18.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

19.
Fractionation between Nb and Ta, elements generally regarded as geochemical ‘identical twins’, is a key to deciphering the formation of the continental crust (CC). Here we show that Nb/Ta of rutile grains in eclogitic rocks from the Chinese Continental Scientific Drilling (CCSD) project are remarkably heterogeneous but overall subchondritic at core depths of 100–700 m, and are less variable and mainly suprachondritic at core depths of 700–3025 m, indicating clear Nb/Ta fractionation across a subducted slab. To understand the potential mechanism of Nb/Ta fractionation within the subducted plate, we analysed by laser ablation ICPMS a thermal migration experiment in which a wet andesite was placed in a large thermal gradient (300°C/cm with ends ranging from 950–350°C) at 0.5Gpa. Results show that Nb, Ta and Ti, driven by the thermal gradient, preferentially migrate by diffusion through supercritical fluids into the cooler end of the experiment (at 650–350°C). Due to contrasting Nb and Ta thermal migration patterns, dramatic fractionation between Nb, Ta, and Ti took place in the cooler end. Experimental results are consistent with the measured Nb, Ta in rutile from CCSD drillhole samples. We consider that major fractionation between Nb, Ta must occur before rutile appears, most likely during the prograde blueschist to amphibole–eclogite transformation, when Ti is also mobile. Before rutile appears, partitioning between Ti‐rich dominant minerals such as amphiboles and fluids in the hotter region where dehydration preferentially occurs, produces Nb–Ta–Ti‐rich fluids with subchondritic Nb/Ta, and dehydration residues with suprachondritic Nb/Ta. Meanwhile, owing to evolution of the thermal gradient within the subducting slab, thermal migration of Nb, Ta, and Ti in aqueous fluids result in Nb, Ta, and Ti enrichment in the cooler region and depletion in the hotter region. As a result of high‐pressure metamorphism, hydrous rutile‐rich eclogites with overall subchondritic Nb/Ta form in the cooler region, whereas relatively anhydrous rutile‐poor eclogites with suprachondritic Nb/Ta form in the hotter region. Subsequently, partial melting of hydrous rutile‐rich eclogites with initial subchondritic Nb/Ta at deeper levels transfers overall subchondritic Nb/Ta coupled with Nb, Ta, and Ti depletion characteristics to the CC, leaving dry rutile‐poor eclogites with suprachondritic Nb/Ta and rutile‐rich residual eclogites with overall, heterogeneous subchondritic Nb/Ta as a complementary reservoir to the CC.  相似文献   

20.
利用LA-ICP-MS对CCSD-MH超高压榴辉岩中金红石进行了详细的原位微区微量元素组成分析.金红石中高场强元素Nb和Ta含量主要受全岩Nb、Ta和TiO2含量控制, Zr、Hf含量比较稳定基本不受全岩含量影响.粒间金红石中, 同一颗粒金红石核部Zr含量系统高于边部, 而边部则出现了明显的Pb和Sr富集特征.CCSD-MH榴辉岩中金红石与全岩的Nb/Ta比值呈现明显的不一致性.全岩Nb/Ta比值明显低于金红石且与全岩TiO2含量负相关, 而金红石的Nb/Ta比值与全岩Nb、Ta含量和Nb/Ta比值没有明显的相关关系.金红石和全岩之间非完全耦合的Nb/Ta组成表明, 金红石并非形成于原岩的结晶过程中而是在超高压变质作用过程中形成, 尽管金红石是榴辉岩中Nb、Ta含量的主要载体矿物, 但金红石的Nb/Ta比值并不一定能完全代表全岩的特征, 而与全岩Nb、Ta和TiO2的含量有关.粒间金红石核部Zr含量所记录的温度与粒径之间具有明显的正相关性, 反映金红石中的Zr在其形成后没有封闭.粒间金红石所表现出的明显的边部富集Pb和Sr的特征, 反映了后期流体活动对金红石组成的影响.这些研究结果为金红石中Zr在高温下的扩散作用和后期流体活动的影响提供了重要证据, 这可能是利用金红石Zr含量地质温度计计算的苏鲁-大别榴辉岩变质温度(598~827℃) 偏低的主要原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号