首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
<正>在植物生长过程中,根系创造了一个能够促进自身生长发育的适宜的根际环境,是植物正常生长的重要保障之一。植物根系除了吸收营养元素外,还不断地向根际环境分泌大量化合物[1],这些由根系不同部位分泌产生的无机离子或小分子有机物统称为根系分泌物[2]。植物根系的分泌作用是其适应胁迫环境的一种重要方式,通过根系分泌作用,植物与根际环境进行着物质、能量与信息的交流[3]。由于大多数根系分泌物能被微生物直接吸收利用,它是驱动森林生态系统碳循环的主要有机碳源[4]。研  相似文献   

2.
全球变暖已成为不争的事实,IPCC第四次评估报告中预测到本世纪末全球地表平均增温1.1-6.4℃。大量研究表明,温度升高可能直接或间接地影响森林生态系统的地上和地下生态过程,有关全球变暖对地上部分的影响在过去十几年已有许多报道,而到目前为止地下部分,包括根系、土壤等了解还十分有限。特别是在森林生态系统中,细根是植物吸收水分和养分,土壤碳输入以及土壤微生物活性的关键环节,对调控生态系统碳平衡以及对全球变化的响应发挥着重要的作用。  相似文献   

3.
森林地下碳分配(TBCA)研究进展   总被引:6,自引:0,他引:6  
森林地下碳分配(TBCA)是森林碳循环的重要通量,对森林碳吸存有十分重要作用.TBCA是森林生态系统GPP中一个最大的汇,可占GPP的21%~61%,土壤呼吸的2/3来自TBCA.目前国际上常用的TBCA测定方法为碳平衡法,在假定地下碳库处于稳定状态时,TBCA可由土壤呼吸减去凋落物量获得,但该方法存在一系列问题.影响森林TBCA的因素有生产力、森林类型、树龄和森林演替阶段、土壤养分和水分有效性、林分密度和树种组成、气候变化因素等.TBCA中各个组成部分均较难以测定和量化,通常假定TBCA中根系呼吸与根系生产力各约占50%,而TBCA中菌根菌和根系分泌物的贡献则仍不清楚.有关TBCA各组分去向及影响机理的研究亦很少.TBCA未来的研究应致力于揭示TBCA的根本驱动因子和其对全球变化的响应机理,以及TBCA转化为土壤新碳的效率及控制因素;同时应提高TBCA测定方法的确定性,特别是应将碳同位素法、微根管法及碳平衡法三者相结合.  相似文献   

4.
森林地下碳分配(TBCA)是森林碳循环的重要通量,对森林碳吸存有十分重要作用.TBCA是森林生态系统GPP中一个最大的汇,可占GPP的21%~61%,土壤呼吸的2/3来自TBCA.目前国际上常用的TBCA测定方法为碳平衡法,在假定地下碳库处于稳定状态时,TB-CA可由土壤呼吸减去凋落物量获得,但该方法存在一系列问题.影响森林TBCA的因素有生产力、森林类型、树龄和森林演替阶段、土壤养分和水分有效性、林分密度和树种组成、气候变化因素等.TBCA中各个组成部分均较难以测定和量化,通常假定TBCA中根系呼吸与根系生产力各约占50%,而TBCA中菌根菌和根系分泌物的贡献则仍不清楚.有关TBCA各组分去向及影响机理的研究亦很少.TBCA未来的研究应致力于揭示TBCA的根本驱动因子和其对全球变化的响应机理,以及TBCA转化为土壤新碳的效率及控制因素;同时应提高TBCA测定方法的确定性,特别是应将碳同位素法、微根管法及碳平衡法三者相结合.  相似文献   

5.
全球温度在上个世纪平均增加了大约0.74℃(1906—2005年)。全球气候模式预测这个趋势将延续到本世纪,到2099年,全球气温将增加1.8~4.0℃[1]。全球变暖可能导致陆地生态系统发生深刻的变化,然而至今为止仍然没有详尽评估这些变化对生态系统氮库及其动态造成的影响[2]。氮作为陆地生态系统生产力最具限制性的元素,在生态系统碳循环中发挥重要的作用[3]。由于森林生态系统的外源性氮输入通常很低,其对森林生物量的增长更显重要[4]。在过去的20年间,温带森林进行了很多长  相似文献   

6.
<正>全球温度在上个世纪平均增加了大约0.74℃(1906—2005年)。全球气候模式预测这个趋势将延续到本世纪,到2099年,全球气温将增加1.8~4.0℃[1]。全球变暖可能导致陆地生态系统发生深刻的变化,然而至今为止仍然没有详尽评估这些变化对生态系统氮库及其动态造成的影响[2]。氮作为陆地生态系统生产力最具限制性的元素,在生态系统碳循环中发挥重要的作用[3]。由于森林生态系统的外源性氮输入通常很低,其对森林生物量的增长更显重要[4]。在过去的20年间,温带森林进行了很多长  相似文献   

7.
正森林土壤是陆地生态系统土壤中最大的碳库,约占全球土壤碳库的3/4,在全球C循环中起至关重要作用[1]。土壤异养呼吸(Heterotrophic respiration,Rh)是森林生态系统土壤碳库损失的主要途径。土壤异养呼吸是指土壤在微生物参与下的矿化过程,主要包括根际微生物呼吸、矿质土壤呼吸(无根土壤)和枯枝落叶层呼吸,由于土壤动物呼吸量不大,因此森林生态系统的异养呼吸主要表现为矿质土壤呼吸[2-4]。土壤异养呼吸具有高度的空间变异性,在全球范围内,异养呼吸所占总呼吸的比例为7%~83%,其中在热带和温带(30%~83%)森林生态系统中所占比例高于寒带地区(7%~  相似文献   

8.
正过去的70年(1948—2010年)中陆地表面平均气温每10年增加0.17℃[1],据IPCC(2007)预计到21世纪末,全球平均温度将增加1.1~6.4℃[2]。近20年来,全球相继开展了大量的增温控制实验,研究各类生态系统对全球变暖的响应。据已发表的文献统计分析表明,目前野外增温控制实验主要集中于中高纬度地区的草原、农田、冻原和森林生态系统[3-6],在30°N以南的热带和亚热带地区野外增温实验鲜有报道[7-8]。  相似文献   

9.
土壤增温对杉木幼林深层土壤CO2通量的影响(简报)   总被引:1,自引:0,他引:1  
全球气候变暖已是不可争辩的事实,据IPCC(2007)预计到21世纪末,全球平均温度将增加1.1~6.4℃[1]。由此,在过去的20年中,全球相继开展了大量的增温控制实验,预测各类生态系统对全球变暖的响应。但是目前野外增温控制实验主要集中在温度受限制的中高纬度地区的草原、农田、冻原和森林生态系统[2-3],在30°N以南的热带和亚热带地区野外增温实验很少见[4-6]。由于低纬度地区的  相似文献   

10.
<正>全球气候变暖已是不可争辩的事实,据IPCC(2007)预计到21世纪末,全球平均温度将增加1.1~6.4℃[1]。由此,在过去的20年中,全球相继开展了大量的增温控制实验,预测各类生态系统对全球变暖的响应。但是目前野外增温控制实验主要集中在温度受限制的中高纬度地区的草原、农田、冻原和森林生态系统[2-3],在30°N以南的热带和亚热带地区野外增温实验很少见[4-6]。由于低纬度地区的  相似文献   

11.
IPCC(2007)预计在21世纪末,全球平均温度将会升高1.1℃至6.4℃[1]。在过去的20年中,全球相继开展了大量的增温控制实验,预测各类生态系统对全球变暖的响应。据已发表的文献统计分析表明,目前野外增温控制实验主要集中于温度受限制的中高纬度地区[2-3],在30°N以南的热带和亚热带地区还几乎没有主动性控制增温实验[4-6],这限制了对全球变暖如何影响亚热带和热带生态系统的认  相似文献   

12.
湿地生态系统碳循环研究进展   总被引:34,自引:6,他引:28  
宋长春 《地理科学》2003,23(5):622-628
碳在不同类型湿地中储藏量约占地球陆地碳总量的15%。由于全球湿地面积迅速减少,湿地生态系统正常的水循环和碳循环过程产生一定的变化,湿地生态系统的演变也可能是全球大气CO2含量升高的一个不可忽视的重要因素。气候条件是湿地碳循环生物地球化学过程的重要驱动因素,湿地特殊的生态水文过程和土壤环境条件,使得湿地碳循环具有区别于其它生态系统碳循环的特征。影响湿地中碳积累与分解过程的重要控制因子是温度、水文条件和植物群落,特别是水文条件对湿地碳循环过程影响较大。湿地土壤呼吸通量与根层土壤温度呈正相关关系,并受地表积水深度和地下潜水水位的影响,另外,洪泛作用会增加湿地CO2的排放率,湿地水文过程决定溶解有机碳的输入与输出过程。  相似文献   

13.
基于FORCCHN的未来东北森林生态系统碳储量模拟   总被引:1,自引:0,他引:1  
以东北森林为研究对象,应用中国森林生态系统碳收支模型FORCCHN,模拟该区森林生态系统碳储量未来可能的时空变化。结果表明: 2003~2049年东北森林生态系统可能仍将具有明显碳汇功能,但强度呈下降趋势;土壤碳储量的变化趋势是从增长到饱和然后逐渐降低的过程,植被碳储量则基本上随时间变化呈逐渐增长趋势。空间上,该区土壤碳储量都有不同程度增加或降低,但植被碳储量都在不同程度的增加;土壤碳储量可能在植被碳储量之前得到饱和,因而东北森林生态系统碳吸收能力的降低主要是由土壤碳储量的减少造成的,而植被碳的增加将会在一定时间内减缓这一过程。  相似文献   

14.
碳同位素在草地生态系统碳循环中的应用与展望   总被引:3,自引:1,他引:2  
草地生态系统在全球碳循环研究中占有重要地位,目前,碳同位素技术已经被广泛地应用于草地生态系统碳循环研究中。本文阐述了碳同位素在草地土壤有机碳的来源、光合作用产物碳在草地生态系统中的分配、草地土壤有机质的周转及草地土壤呼吸研究方面的应用,重点论述了碳同位素在土壤呼吸方面的应用。应用碳同位素对土壤呼吸进行区分的方法主要包括13C自然丰度法、脉冲标记法、同位素稀释法、模拟根际沉积物法、14CO2动态模型法、根系分泌物洗涤法等。碳同位素技术对草地土壤和根干扰很小,方法相对成熟,为深入研究草地生态系统碳循环提供了巨大潜力。在我国,应用碳同位素方法研究草地生态系统碳循环在土壤有机碳的来源、分配及周转和土壤呼吸区分等方面有进一步研究的必要,也有进一步研究的发展空间。  相似文献   

15.
探究草地生态系统碳储量及其驱动因素对实现双碳目标具有重要意义,藏北高原作为我国重要的草地生态系统,其碳储量现状,空间格局以及驱动因素仍存在很大的争议。本文基于藏北高原150个实测样点数据,通过克里金插值和统计方法,评估分析了藏北高原草地生态系统的地上生物量碳密度、地下30 cm深度根系碳密度和土壤碳密度及其空间分布,以及各碳库的主要影响因素。结果表明:藏北高原地上生物量碳密度平均为0.038 kg C m-2,地下生物量碳密度平均为0.284 kg C m-2,土壤碳密度值最大,平均为7.445 kg C m-2。藏北高原草地生态系统总碳储量约为4.08 Pg C,其中植被碳库0.58 Pg C(包括地上生物量和地下生物量),土壤碳库2.58 Pg C (其余分布在裸地中),碳储量分布格局呈现出从东南向西北递减趋势。植被碳库0.58 Pg C(包括地上生物量和地下生物量),约占青藏高原植被碳库的28.29%;土壤碳库2.58 Pg C,约占青藏高原土壤碳库的26.60%。降水、温度和土壤质地均影响生态系统碳储量,其中降水...  相似文献   

16.
董云社  齐玉春 《地理研究》2006,25(1):183-183
我国草地生态系统碳素总贮量为308 PgC,占陆地生态系统碳素总储量的15·2%,草地生态系统在碳循环研究中占有重要的位置。草地生态系统碳循环具有其独特的生物地球化学循环过程和作用,主要表现为:碳素储量绝大部分集中于土壤中,地上生物量中仅为10%;草地生态系统不像森林生态系统那样具有明显的地上生物量,但由于地上部分受放牧、农垦等的影响碳循环远较森林生态系统要强烈,地上部分碳循环不仅速度快,而且向大气排放CO2的作用明显;作为主要碳贮存库的地下部分,由于草地所处的特殊地理位置和气候条件,导致其地下部分分解普遍较慢,草地作为CO2汇的作用更为明显。因此,对于草地生态系统独特的碳循环过程与机制的研究  相似文献   

17.
土壤呼吸是陆地生态系统通过根系呼吸和微生物呼吸向大气中释放CO2的过程。研究土壤呼吸的时空格局,将有助于构建区域尺度土壤呼吸定量评价模型,也可提高预测未来气候变化情境下的典型生态系统、区域以及全球尺度碳平衡状况的能力。本文整合了中国区域土壤呼吸的主要研究成果,分析了温度敏感性(Q10)和土壤呼吸(Rs)的统计特征和区域差异,定量评价了中国区域Rs的时空格局及其在中国和全球碳平衡中的作用。通过以上分析本文得出以下主要结论:①不同生态系统类型的土壤呼吸的Q10表现为森林〉农田〉草地,气候越寒冷,土壤呼吸Q10越大,并且中国区域的Q10值相对于其他国家偏低;②Rs具有明显的季节变异,不同生态系统类型的Rs表现为森林〉农田〉草地,并且,中国区域Rs低于全球Rs;③月尺度上Rs随着经纬度发生明显的季节变异,随着经度的增加,Rs的季节变幅也逐渐增加;④1995-2004年中国区域Rs的年总量的平均值为3.84 PgC,占全球土壤CO2排放的比例4.78%。  相似文献   

18.
森林是重要的陆地生态系统碳汇。1990–2007年间全球森林平均每年从大气中吸收固定2.4±0.4PgC,但对全球森林未来固碳量的评价多是基于气候因素的过程模型的模拟结果,很少有基于森林调查样地数据评价全球森林固碳潜力的研究。我们收集整理野外调查和已发表的成熟林生物量数据728条,建立全球成熟林生物量数据库。根据成熟林地上生物量碳储量空间插值,得到全球森林地上生物量碳容量,进而评估全球森林地上生物量的固碳潜力。结果显示:(1)全球成熟林地上生物量自赤道向两极整体呈递减趋势,但最大值出现在中纬度区;(2)气温和降水是影响成熟林地上生物量的重要因素;(3)全球森林地上生物量碳容量约为586.2±49.3PgC,其地上生物量固碳潜力为313.4PgC。因此,充分发挥现有森林的碳吸存能力,减少对现有森林碳库的干扰,是土地利用变化之外减缓温室气体排放的又一可选途径。  相似文献   

19.
中国陆地自然植被碳量空间分布特征探讨   总被引:66,自引:5,他引:61  
陆地生态系统在全球碳循环动力学中的作用受到越来越多的注意。目前中国森林覆盖率为1392% , 到本世纪末全国森林覆盖率将达到15% , 对全球碳平衡具有重要作用。但是,由于我国碳循环的基础研究比较落后,致使我国陆地生态系统的碳储量和净第一性生产力 (NPP) 碳量还没有被准确确定, 而且陆地生态系统的碳通量估计存在较大差异。  相似文献   

20.
过去陆地生态系统碳储量估算研究   总被引:1,自引:0,他引:1  
准确估算陆地生态系统碳储量并认识其空间分布和时间演变规律是碳循环研究的关键 问题。本文回顾了全球与中国陆地生态系统在碳储量估算研究方面的若干进展, 包括基于各种方 法和资料的主要估算结果及其尚存在的不确定性。重点评述了末次盛冰期和中全新世两个时期 陆地生态系统碳储量的变化及其影响因素, 对8.2kaB.P.以来全球大气CO2 浓度呈现升高的现象 及其可能原因进行了讨论。全新世中晚期全球大气CO2 浓度逐渐升高与旧大陆地区陆地生态系 统碳储量减少的事实是一致的, 新石器时期特别是农业文明开始以后人类活动对陆地植被的持 续干预可能是造成陆地生态系统碳储量减少的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号