首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
新生代气候变化与陆地硅酸盐岩风化和海洋Sr同位素研究   总被引:2,自引:0,他引:2  
新生代全球气候自始新世55Ma以来在逐渐变冷。陆地硅酸盐岩在造山带和高原地区通过加速化学风化,消耗了大气中的CO2温室气体造成了新生代气候变冷。目前关于陆地硅酸盐岩风化与海洋Sr同位素关系的研究,主要存在两种观点:一种认为海水Sr同位素变化可作为全球地表化学风化的替代性标志;另一种观点认为全球并不存在平均地表风化这种说法,海水Sr同位素在地质历史中的演化是主要与某种地质构造事件或岩石类型的风化有关。我国应当不失时机地加快对源于喜玛拉雅山地的恒河-布拉马普特拉河进行研究,以进一步揭示陆地硅酸盐岩风化与海洋Sr同位素变化的关系。  相似文献   

2.
全球气候变化——新生代构造隆升的结果   总被引:4,自引:0,他引:4  
王成善  向芳 《矿物岩石》2001,21(3):173-178
构成地球的各大圈层是相互联系、相互影响的,因此其中一个圈层发生变化必将影响其他圈层的特征和状态。新生代时,岩石圈中出现了物质的重新分配与调整,产生了地史上最为显著的构造隆升。同时,地球其他圈层中也出现了明显的变化;大气圈中有大气环流的改变,大气CO2质量分数的变化;水圈中出现降雨分布的改变、两极冰盖的出现;生物圈表现为植物群落分布的迁移;这些变化的同时出现暗示地表的隆升对其他圈层,特别是大气圈产生了重要的影响。基于此种推断,以Ruddiman等为代表的科学家提出了构造隆升-气候假设。这一假设对解释新生代以来气候变化以及隆升与气候之间的相互影响提供了较为合理的答案。但是,由于许多尚未解决的问题,特别是缺少对新生代以来地壳主要隆升区(特别是青藏高原)构造演化史的清楚认识,关于新生代气候变化的真正原因还缺乏定论。更多的工作还有待于地质学家、气象学家、生物学家、海洋学家等来共同完成。  相似文献   

3.
南极大陆记录了新生代以来地质演化中多次重大地质事件,包括大陆生长、裂解和离散、全球冷却和大陆尺度南极冰盖的发展等。尽管非常重要,但至今关于南极大陆新生代地质演化仍有诸多争论。文章主要针对塔斯曼通道和德雷克海峡贯通过程,系统总结并分析了南极洲、南美洲和澳大利亚的构造、岩浆和沉积演化历史。始新世晚期至渐新世早期开始发育的南极环极洋流(ACC)受德雷克海峡和塔斯曼通道扩张程度的控制。综合分析和对比研究表明,~34 Ma全球气候从"暖室"到"冷室"的转变与ACC开始的时间一致,表明构造通道的打开控制了ACC的发育,进而对全球气候产生了重要影响。最后,简要总结了南极作为一个完整的地球系统,其新生代地质演化如何控制海陆格局的变迁,并提出未来研究需要解决的关键问题。  相似文献   

4.
大陆风化与全球气候变化   总被引:12,自引:3,他引:12  
:“构造隆升驱动气候变化”的假说是当前解释新生代以来全球气候变冷的主流观点。该假说把新生代以来发生的几个主要现象 ,即全球气候总体上趋冷 ,大气 CO2 浓度下降 ,海洋 87Sr/ 86Sr比值上升 ,以及构造作用引起的大面积隆升等加以有机的联系 ,给以了合理的解释。近几年围绕大陆风化和全球气候变化问题取得了一些新的进展 ,主要是对发源于喜马拉雅山的河流进行研究 ,探讨青藏高原隆起对于大陆风化速率的影响。这些争论主要是有关硅酸盐风化还是碳酸盐风化 ,有机碳的风化与埋藏 ,大陆风化与大气温度 ,大气 CO2 浓度与大气温度等问题。最后介绍了我国研究人员在黄土高原的黄土沉积地层所作的研究工作和取得的成果。  相似文献   

5.
热带地区火山岛/岛弧的化学风化对全球碳循环和海水的Sr同位素演化均有着重要的作用。文章对中国热带海南岛的玄武岩、花岗岩小流域和大河流域进行了河水、地下水、雨水以及基岩和沉积物的综合研究,分析了水样和固体样品的元素含量和Sr同位素比值。结果显示,河床沉积物的化学蚀变指数(CIA)与87Sr/86Sr之间存在着一定的变化关系,而这主要归因于沉积物的阶段性差异风化:风化早期阶段以黑云母占主导,87Sr/86Sr较高。此后斜长石开始风化,87Sr/86Sr逐渐下降。在风化程度中等阶段,斜长石大量分解后,各种富钾矿物风化加剧,87Sr/86Sr值升至最高点。在高风化程度阶段,随着富钾矿物逐渐减少,稳定的风化残余物质占据主导,87Sr/86Sr值逐渐下降。与年轻的活火山岛——加勒比海小安的列斯群岛和印度洋的留尼汪岛相比(其地下化学风化速率2~5倍于地表风化速率),由于相对较低的降水量和老死火山低的孔隙度,海南岛地下水的流量和固溶物总量(TDS)要低的多,导致海南岛的地下化学风化速率低于地表风化速率,仅与高纬的俄罗斯堪察加活火山岛相近,为小安的列斯群岛和留尼汪岛的约6%~25%,属于全球地下风化贡献最低的区域之一。海南岛玄武岩区的地表化学风化和CO2消耗速率高于法国中央高原和西伯利亚,略低于夏威夷和德干,而显著小于东南亚的爪哇岛和 吕宋岛。在温度相近的条件下,径流量对化学风化速率有着非常明显的控制作用。由于较低的年径流量,热带区域的海南岛,其对大气CO2的消耗能力只是处于一个全球平均的范围内。  相似文献   

6.
全球范围内已确认的新生代陨击天文事件有8次,根据陨击直接证据或板块构造演化等推测的陨击事件至少还有3次,这些陨击天文事件都对应了新生代不同程度的气候变化。新生代全球气候变化的触发因素主要包括陨击天文事件、地球轨道参数变化、CO2浓度降低和全球碳循环变化、海洋及大气系统大量甲烷水合物释放、洋流变化及全球规模的构造运动(如构造隆升、超地幔柱、大规模火山活动)等,陨击天文事件是全球气候变化最主要的触发因素。  相似文献   

7.
通过磷灰石裂变径迹(AFT)分析与热史模拟的方法,探讨了鄂尔多斯盆地中西部地区中新生代构造热演化过程及地质响应。不同构造单元及不同层位样品的AFT年龄结果表明,研究区中生代以来经历2次构造抬升:晚白垩世末—古新世早期(79~65 Ma)和始新世—中新世早期(56~15 Ma);AFT年龄空间对比图表明,研究区抬升冷却具有南早北晚、后期整体抬升的特征。热史模拟结果表明,研究区整体于晚白垩世末期快速冷却抬升,古新世—中新世晚期为缓慢抬升,中新世末以来抬升速率明显加快。研究区中新生代的构造演化过程与周缘构造单元的相互作用密不可分,晚白垩世以来的构造抬升可能与秦岭造山带构造演化有关,新生代以来的构造抬升与盆地周缘裂陷的演化具有一致性,中新世晚期以来的快速抬升可能与青藏高原隆升的远程效应有关。  相似文献   

8.
全球气候变化对中国未来地表径流的影响   总被引:21,自引:0,他引:21       下载免费PDF全文
本文应用改进的水分平衡模型研究了不同气候变化情景下中国未来地表径流的变化。结果表明:基于不同的气候变化情景模拟所得的地表径流变化在空间上有差异,总体上,中国未来的地表径流将增加;长江上游地区的地表径流春季下降但在夏季增加,而下游地区的则相反,夏季径流下降而春季径流剧增;气溶胶对地表径流变化方面有影响,但在各个气候变化情景下缺乏一致性。  相似文献   

9.
不同构造带硅酸盐化学风化率的制约:气候还是构造?   总被引:7,自引:0,他引:7  
金章东  李英  王苏民 《地质论评》2005,51(6):672-680
虽然构造—风化-气候之间的制约关系仍然存在各种争论,但无疑的是,硅酸盐矿物的化学风化是调节地质时间尺度全球大气二氧化碳分压,进而保持地球表层气候稳定的关键性因素。目前最大的挑战在于如何理解地表制约硅酸盐矿物化学风化的因素,特别是当仅仅从气候要素变化难以解释长时间尺度硅酸盐化学风化率的时候。综合不同构造区内岩石物理剥蚀率和硅酸盐化学风化率的数据表明,不同时间、空间尺度硅酸盐风化率与构造和气候之间既存在相互耦合也存在矛盾的关系,仅仅归因于单一要素是不能得到圆满解释的。构造隆升区的强剥蚀可能是造成硅酸盐风化率增加的重要因素之一,但是将晚新生代地表系统的各种变化与各构造带(如青藏高原)的阶段性隆升联系起来可能是草率的。在不同类型构造带内,气候和构造对硅酸盐风化的制约并非是相互排斥的,特别是长时间尺度,因此“构造隆升-化学风化-气候变化”假说也正面临着全新的挑战。  相似文献   

10.
以中国西南"三江"(澜沧江-金沙江-怒江)地区西范坪铜矿床、玉龙铜矿床和北衙金矿床为例说明了该地区斑岩型铜或金矿床的次生分带特征,概述了青藏高原、滇川西部高原的隆升,以及新生代构造抬升对地表化学风化的影响;指出西范坪铜矿床、玉龙铜矿床和北衙金矿床等明显经历过表生成矿作用的典型斑岩型矿床均位于青藏高原强烈隆升区的边部或边缘地带,新生代构造抬升对这些地段气候、地形的影响大大促进了地表的化学风化作用;认为新生代强烈隆升可能是导致这些矿床发生强烈次生富集作用的深层次原因.  相似文献   

11.
对黄土高原不同纬度地区的4个黄土—古土壤剖面和lO个现代土壤样品中绿泥石的化学风化进行研究,发现黄土—古土壤剖面中的绿泥石在最近13万年发生了明显的化学风化,其风化程度受剖面位置和气候控制;黄土—古土壤剖面中ω(绿泥石 高岭石)/ω(伊利石)的比值与磁化率之间具有良好的负相关关系,绿泥石的化学风化与古土壤中铁氧化物矿物的形成和磁化率的增强之间有成因联系;黄土高原现代地表样品中ω(绿泥石 高岭石)/ω(伊利石)比值与现代年平均温度和年平均降水量有着良好的相关关系。认为ω(绿泥石 高岭石)/ω(伊利石)的比值可作为新的指示夏季风变化的替代性指标,对于定量重建古气候的变迁历史具有重要意义。  相似文献   

12.
科学大洋钻探与全球气候变化研究   总被引:2,自引:0,他引:2  
文章简要地回顾了科学大洋钻探的发展历程。深海钻探计划(DSDP)革命性地改变了地球科学家们对地球动力作用的认识。DSDP的后继者,即大洋钻探计划(ODP)正在全球各大洋收集有关这些作用在几万至几十万年时间尺度上变化的高分辨率记录,并已在与全球气候有关的下述领域取得了重要进展:地质历史时期气候变化的幅度、速度及原因,按轨道调谐的新生代(10Ma前以来)地质年代表,高纬度地区冰盖形成及演化历史,造山运动与长期气候变化之间的相互关系,气体水合物与全球气候变化的相互制约关系。DSDP和ODP的成就使地球科学家们相信,在全球年轻的大洋底实施钻探以取得连续的沉积记录和录井记录,是研究过去全球气候的长期、短期变化的有效而重要的手段,并将给未来全球变化的研究带来启示  相似文献   

13.
新生代全球变冷与青藏高原隆升的关系   总被引:8,自引:0,他引:8  
文中综合分析可以影响新生代全球变冷的四种原因,提出青藏隆升对新生代大气CO2浓度降低起主导作用,对新生代全球气温的降低起关键控制作用。这种作用是通过青藏高原隆升加剧全球硅酸盐岩和碳酸盐岩的化学风化、有机碳埋藏、植物的光合作用来实现的。而且,青藏高原隆升有可能同洋流改变和行星轨道参数变化于第三纪末至第四纪共同对新生代全球变冷起控制作用。因此,目前首先解决的科学目标应该是:精确刻划青藏高原隆升时代和幅度,并确定青藏高原隆升对新生代全球变冷的贡献,确定一种以青藏高原隆升为主导作用的控制新生代全球变冷的综合模式。  相似文献   

14.
数字地球及其在全球变化研究中的应用前景   总被引:4,自引:0,他引:4  
孙枢  史培军 《第四纪研究》2000,20(3):213-219
本文介绍了对“数字地球”的不同学术理解和当前国内外数字地球发展重点领域或方向,展望了“数字地球”在全球变化研究中的应用前景,指出在第四纪环境演变研究中要重视广泛应用对地观测技术,建立数据库,进而阐明全球变化的区域响应过程,揭示区域和全球变化过程中人与自然在其中的作用程度,为可持续发展模式的建立提供科学依据。  相似文献   

15.
固体地球科学要积极参与全球变化的研究。全球增暖的温室气体CO2增率与大气升温呈正相关性。第四纪的最末1.5Ma间有17次冰期,其成因可能与米兰科维奇周期律有关。除现今估算的人类每年燃料排放的CO2量外,地球内部由火山和地震等的大地构造原因释放的CO2量需定量估算,甚至可能是大气CO2增率的主要来源。我国文化历史悠久,对历史中的盛世与气候变迁关系应深入研究。我国的自然条件复杂而独特,应研究其变化特色  相似文献   

16.
亚洲形变与全球变冷──—探索气候与构造的关系   总被引:35,自引:0,他引:35       下载免费PDF全文
汪品先 《第四纪研究》1998,18(3):213-221
亚洲是当代地球上唯一夹在两个汇聚大陆边缘的陆地,在亚洲与西太平洋之间由于地形和气压的巨大反差,形成最为强烈的能流和物流。这种反差,是亚洲在新生代晚期经受全球最大构造形变的产物。印度与亚洲碰撞,太平洋板块转向,边缘海张裂,中国地形倒转,大江东流,陆架和沿海平原形成,这一系列变化造成了区域性甚至全球性的严重气候后果。探索亚洲形变与新生代全球变冷的可能关系,从而揭示气候与构造的关系,是我国地学界责无旁贷的任务。  相似文献   

17.
张岳桥  杨农  陈文  马寅生  孟晖 《地学前缘》2003,10(4):599-612
中国东西部地貌边界带横跨青藏高原东部与扬子地块,成为我国大陆Ⅰ级构造地貌陡变带和地球物理变异带。根据地表构造形迹的组合特征,地貌边界带由3个主要形变系统组成,从北到南它们是:东昆仑—岷山左旋走滑-冲断系统、龙门山—龙泉山冲断-推覆系统、鲜水河—安宁河左旋走滑-冲断系统等。在综合分析各构造系统的组成、变形特征、变形年代学和演化过程等基础上,提出了青藏东缘晚新生代阶段性构造演化模式。指出,晚中新世至早上新世时期,强烈的走滑-冲断变形主要发生在地貌边界带中南段,导致鲜水河—安宁河走滑-冲断系统和龙门山—龙泉山冲断-推覆系统的形成和发展,而东昆仑—秦岭断裂系则以走滑伸展变形为主,沿西秦岭构造带发育走滑拉分盆地和幔源火山喷发活动。晚上新世—早更新世时期,构造运动性质发生了南北反转,强烈的走滑挤压活动主要集中在北段东昆仑—岷山走滑-冲断系统,岷山隆起带在此时期强烈活动而快速崛起;青藏高原东南缘鲜水河—安宁河走滑断裂系统则以走滑伸展变形为主,在深切河谷中发育了昔格达河湖相沉积。中更新世以来,构造形变系统以挤压剪切为主,兼具正向倾滑活动,局部发生断陷作用。基于攀西地区深切河谷的构造地貌分析,提出了青藏东南缘晚新生代4-阶段隆升模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号