首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
QC-estimates of Kachchh Basin in western India have been obtained in a high frequency range from 1.5 to 24.0 Hz using the aftershock data of Bhuj earthquake of January 26, 2001 recorded within an epicentral distance of 80 km. The decay of coda waves of 30 sec window from 186 seismograms has been analysed in four lapse time windows, adopting the single backscattering model. The study shows that Qc is a function of frequency and increases as frequency increases. The frequency dependent Qc relations obtained for four lapse-time windows are: Qc=82 f1.17 (20–50 sec), Qc=106 f1.11 (30–60 sec), Qc=126f1.03 (40–70 sec) and Qc=122f1.02 (50–80 sec). These empirical relations represent the average attenuation properties of a zone covering the surface area of about 11,000, 20,000, 28,000 and 38,000 square km and a depth extent of about 60, 80, 95, 110 km, respectively. With increasing window length, the degree of frequency dependence, n, decreases marginally from 1.17 to 1.02, whereas Q0 increases significantly from 82 to 122. At lower frequencies up to 6 Hz, Qc−1 of Kachchh Basin is in agreement with other regions of the world, whereas at higher frequencies from 12 to 24 Hz it is found to be low.  相似文献   

2.
The single scattering model has been applied for the estimation of codaQ values for local earthquakes that occurred in northern Greece during the period 1983–1989 and recorded by the telemetered network of the Geophysical Laboratory of the University of Thessaloniki. CodaQ estimations were made for four frequency bands centered at 1.5 Hz, 3.0 Hz, 6.0 Hz and 12.0 Hz and for the lapse time windows 10–20 sec, 15–30 sec, 20–45 sec, 30–60 sec and 50–100 sec. The codaQ values obtained show a clear frequency dependence of the formQ c =Q 0 f n , whileQ 0 andn depend on the lapse time window.Q 0 was found equal to 33 andn equal to 1.01 for the time window of 10 to 20 sec, while for the other windowsQ 0 increased from 60 to 129, withn being stable, close to 0.75. This lapse time dependence is interpreted as due to a depth dependent attenuation. The high attenuation and the strong frequency dependence found are characteristic of an area with high seismicity, in agreement with studies in other seismic regions.  相似文献   

3.
The attenuation property of Andaman Island has been investigated analyzing coda waves from 57 local earthquakes in the magnitude range of 2.0–4.9, using the single backscattering model. These earthquakes waveforms, recorded on five broadband seismographs sited over the island from north to south during Nov. 2003 to March 2004, have been used to calculate the frequency dependent Coda Q (Q c ) applying the time domain coda-decay method. The Coda Q, computed at central frequencies from (0.5–12) Hz and five-lapse time windows from 40 to 80 s, progressively increases from 105 f 0.88 in the north Andaman to 135 f 0.79 in the south Andaman with an average of 119 f 0.80. The average Q c values vary from 75 ± 42 at 0.5 Hz to 697 ± 54 at 12 Hz central frequency for 40 s lapse time window, while for 80 s lapse time window its variation is from 117 ± 38 at 0.5 Hz to 1256 ± 115 at 12 Hz. The Q c estimated at different lapse times manifests a significant variation from 122f 0.75 to 174f 0.73, corresponding to lapse time window lengths of 40 and 80 s, respectively. The variation of Q c with frequency, lapse time and also with the location of seismograph reflects the marked structural and compositional inhomogeneity with depth along the Andaman Islands. These observations are well correlated with the seismicity pattern and distinct high angle subduction beneath the island.  相似文献   

4.
The dependence of coda attenuationQ c on frequency and lapse time was studied. Data from small local earthquakes, recorded at three stations (VMR, VSI and VFI) of the VOLNET network operating in central Greece, were used.Q c was estimated by applying the single scattering model to bandpass-filtered seismograms, over a frequency range of 1 to 12 Hz. Analysis was performed every 10 s until the end on overlapping time windows.Q c is found to depend on frequencyf in Hz according to a power law,Q c =Q 0 f n . ObservedQ 0 ranges from 30 to 100 and the powern ranges from 0.90 to 0.70.Q 0 increases andn decreases with lapse time increasing. A strong dependence ofQ c on lapse time was also found. In the frequency range of 1 to 8 Hz and at a short lapse time,Q c values were found to be similar for all three stations. On the other hand, at the longest analyzed time window (50 s), the estimatedQ c values show a discrepancy which is more obvious at a higher frequency band. The scattering coefficient around the central station VSI is found to range from 0.029 to 0.0041 km–1.Q c from the single scattering model andQ s from the amplitude ratio of directS to coda waves for the VSI station are similar. We believe dependence of coda attenuationQ c on frequency and lapse time is caused by a combination of geotectonic features and depth variation asQ s .  相似文献   

5.
The attenuation of coda waves is analysed for nine seismic stations in the area of convergent motion of the Adriatic microplate and the Dinarides. The frequency dependent coda quality factor of the form Qc = Q0 fn is estimated for up to seven central frequencies (1.5, 3, 6, 9, 12, 18 and 24 Hz) and for 21 successive 30 s long time windows. Q0 was found to increase from 68–353 for short lapse times of 20–50 s, to 158–373 for lapse times of 90–100 s. Parameter n is observed to vary between 0.46 and 0.89, with a pronounced tendency to decrease with increasing Q0, and vice versa. Both Q0 and n seem to stabilize for lapse times larger than 50–80 s, indicating that a change in rock properties controlling coda attenuation occurs at depths of about 100–160 km. The spatial distribution of observed Q0 is well correlated with observed seismicity and inferred tectonic activity. In particular, we observe significant negative correlation of Q0 with the peak ground acceleration (PGA) estimate for the return period of 475 years. The degree of frequency dependence n, is the smallest for stations on the islands, where the crust is the thinnest. The largest n is observed over the thickest crust in the region, where the Moho lies at depths of over 55 km.  相似文献   

6.
Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.  相似文献   

7.
In the present study, a digital waveform dataset of 216 local earthquakes recorded by the Egyptian National Seismic Network (ENSN) was used to estimate the attenuation of seismic wave energy in the greater Cairo region. The quality factor and the frequency dependence for Coda waves and S-waves were estimated and clarified. The Coda waves (Q c) and S-waves (Q d) quality factor were estimated by applying the single scattering model and Coda Normalization method, respectively, to bandpass-filtered seismograms of frequency bands centering at 1.5, 3, 6, 12, 18 and 24?Hz. Lapse time dependence was also studied for the area, with the Coda waves analyzed through four lapse time windows (10, 20, 30 and 40?s). The average quality factor as function of frequency is found to be Q c?=?35?±?9f 0.9±0.02 and Q d?=?10?±?2f 0.9±0.02 for Coda and S-waves, respectively. This behavior is usually correlated with the degree of tectonic complexity and the presence of heterogeneities at several scales. The variation of Q c with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth. In fact, by using the Coda Normalization method we obtained low Q d values as expected for a heterogeneous and active zone. The intrinsic quality factor (Q i ?1 ) was separated from the scattering quality factor (Q s ?1 ) by applying the Multiple Lapse Time Domain Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering with uniform distribution of scatters. The obtained results suggest that the contribution of the intrinsic attenuation (Q i ?1 ) prevails on the scattering attenuation (Q s ?1 ) at frequencies higher than 3?Hz.  相似文献   

8.
We analyzed the local earthquakes waveform recorded on a broadband seismic network in the northwestern Himalayan Region to compute lapse time and frequency dependence of coda Q (Q c). The observed Q c values increase with increasing lapse time at all frequency bands. The increase in Q c values with lapse time is attributed to an increase in Q c with depth. This implies that attenuation decreases with increasing depth. The approximate radius of medium contributing to coda generation varies from 55 to 130 km. By comparing the Q c values with those from other regions of the world, we find that they are similar to those obtained from tectonically active regions. The estimated Q c values show a frequency-dependent relationship, Q c = Q 0 f n , where Q 0 is Q c at 1 Hz and n represents degree of frequency dependence. They represent the level of heterogeneity and tectonic activity in an area. Our results show that northwest Himalayas are highly heterogeneous and tectonically very active. Q 0 increases from 113 ± 7 to 243 ± 10 and n decreases from 1.01 ± 0.05 to 0.85 ± 0.03 when lapse time increases from 30 to 70 s. As larger time window sees the effect of deeper part of the Earth, it is concluded that Q 0 increases and n decreases with increasing depth; i.e., heterogeneity decreases with depth in the study area.  相似文献   

9.
We present the first systematic study of attenuation derived from the S-wave coda in the frequency range 1-32 Hz for the southern part of the Netherlands and its surroundings. For this we used two methods, the codaQ (Q c) method and the Multiple Lapse Time Window (MLTW) method. In the interpretation of the results both single and multiple scattering in a half space are considered. Our aim is to validate these interpretations in our region and to try to identify theeffects of attenuation due to intrinsic absoprtion (Q i)and scattering attenuation (Q s). For this we analyzedmore than 100 3-component high-quality digital seismograms from 43 crustalevents and 23 different stations in the Netherlands, Germany and Belgium.Coda Q results show smaller Q c (=Q 0fn) values for epicentral distances shorter than 25 km (Q 0=90) compared to larger epicentral distances (Q 0=190), but similar frequency dependence (f-0.9). Interpretation of MLTW results provided a seismic albedo smaller then 0.5, suggesting that the intrinsic absorption dominates over scattering in this region. Both Q i and Q s show similar frequency dependences as Q c. These results are comparable to those obtained in other areas, but we also show that more sophisticated models are required to remove ambiguities in the interpretation. For short lapse times and shortevent-station distances we find for the simple half space model a correspondinginterpretation of both methodologies, where Q c correspondsto Q t, suggesting that a model with single scattering in ahalf space is appropriate. For long lapse times and long event station distances, however, we find that the S-wave coda is, most probably, too much influenced by crust-mantel heterogenities and more sophisticated Qinversion models using larger data sets are required for more reliable attenuation estimates.  相似文献   

10.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

11.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

12.
The attenuation characteristics based on coda waves of two areas—Jamnagar and Junagarh of Saurashtra, Gujarat (India)—have been investigated in the present study. The frequency dependent relationships have been developed for both the areas using single back scattering model. The broadband waveforms of the vertical components of 33 earthquakes (Mw 1.5–3.5) recorded at six stations of the Jamnagar area, and broadband waveforms of 68 earthquakes (Mw 1.6–5) recorded at five stations of the Junagarh area have been used for the analysis. The estimated relations for the Junagarh area are: Q c?=?(158?±?5)f(0.99±0.04) (lapse time : 20?s), Q c?=?(170?±?4.4)f(0.97±0.02) (lapse time : 30?s) and Q c?=?(229?±?6.6)f(0.94±0.03) (lapse time : 40?s) and for the Jamnagar area are: Q c?=?(178?±?3)f(0.95±0.05) (lapse time : 20?s), Q c?=?(224?±?6)f(0.98±0.06) (lapse time : 30?s) and Q c?=?(282?±?7)f(0.91±0.03) (lapse time : 40?s). These are the first estimates for the areas under consideration. The Junagarh area appears to be more attenuative as compared to the Jamnagar area. The increase in Q c values with lapse time found here for both the areas show the depth dependence of Q c as longer lapse time windows will sample larger area. The rate of decay of attenuation (Q ?1) with frequency for the relations obtained here is found to be comparable with those of other regions of the world though the absolute values differ. A comparison of the coda-Q estimated for the Saurashtra region with those of the nearby Kachchh region shows that the Saurashtra region is less heterogeneous. The obtained relations are expected to be useful for the estimation of source parameters of the earthquakes in the Saurashtra region of Gujarat where no such relations were available earlier. These relations are also important for the simulation of earthquake strong ground motions in the region.  相似文献   

13.
Based on the single scattering model of seismic coda waves, we have calculated theQ-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used. These earthquakes were recorded from January 1, 1989 to December 31, 1990 at 20 stations. This paper shows the variations of the codaQ-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the codaQ-factors in these two years. The results indicate that codaQ-factor depends strongly on the lapse time and frequency. It is assumed that whenQ C=Q 0fη, for the three time windows of 15–30s, 30–60s and 60–90s, the average values ofQ 0 are 48, 115 and 217; and the average values ofη are 0. 89, 0.91 and 0.74, respectively.  相似文献   

14.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

15.
Attenuation of seismic waves is very essential for the study of earthquake source parameters and also for ground-motion simulations, and this is important for the seismic hazard estimation of a region. The digital data acquired by 16 short-period seismic stations of the Delhi Telemetric Network for 55 earthquakes of magnitude 1.5 to 4.2, which occurred within an epicentral distance of 100 km in an area around Delhi, have been used to estimate the coda attenuation Qc. Using the Single Backscattering Model, the seismograms have been analyzed at 10 central frequencies. The frequency dependence average attenuation relationship Qc = 142f 1.04 has been attained. Four Lapse-Time windows from 20 to 50 seconds duration with a difference of 10 seconds have been analyzed to study the lapse time dependence of Qc. The Qc values show that frequency dependence (exponent n) remains similar at all the lapse time window lengths. While the change in Q0 values is significant, change in Q0 with larger lapsetime reflects the rate of homogeneity at the depth. The variation of Qc indicates a definitive trend from west to east in accordance with the geology of the region.  相似文献   

16.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

17.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

18.
Regional seismic apparent attenuation was estimated for Costa Rica, Central America, by using a time domain single scattering model of the shear wave coda decay of local earthquakes. The sensitivity of coda Q (Qc) measurements with respect to geological differences in the crust is demonstrated in eight sub-regions with a large variety of tectonic and geologic properties. The Qc estimations were performed for 96 selected local earthquakes recorded at 13 sites during a period of three months. In order to model the scattering as a weak process and to avoid short distance nonlinear effects, we made use of the S-wave coda data only from events within a hypocentral distance of 12 to 106 km with a lapse time between 9 and 53 s. Seismograms were also divided into groups with three different focal depths d, namely d<21 km, 21 kmc values are frequency dependent in the range 1–9 Hz, and are approximated by a least-squares fit to the power law Qc(f) = Q0(f/f0)n. The estimated parameters of the power-law dependence of Qc for the whole region, including all depths and possible wave paths, are Q0 = 91 (± 8.4) and n = 0.72 (±0.071). Differences in the parameter of Qc for different depths intervals are small, ranging from Q0 = 90 (±0.7) and n = 0.70 (±0.006) for the uppermost group, with focal depths less than 21 km, to Q0 = 97 (±0.7) and n = 0.79 (±0.005) for the deepest group with focal depths larger than 43 km. The regional differences in Qc for the eight sub-regions are significantly larger when compared with the differences between the three focal depth groups. An attempt is made to interpret the variation of Qc in terms of spatial variations in the geologic and tectonic properties of the crust. Other authors have found that the frequency exponent n might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Pacific coast we obtain a value of n = 0.52 (±0.011), which might indicate a lower level of tectonic activity when compared with n = 0.85 (±0.015) and 0.83 (±0.031), respectively, for the central and southern sub-regions along the Pacific coast. The latter two sub-regions are located closer to the active area near the Cocos ridge. We obtain the frequency exponent n = 0.72 (±0.052) along a major shear zone in central Costa Rica characterized by high volcanic activity and large geologic complexity. Values of n along the Panamean border are 0.62 (±0.029) in the north and 0.86 (±0.009) and 0.83 (±0.031) in two regions adjacent to the subduction zone and the Cocos Ridge, respectively.  相似文献   

19.
The attenuation in Southeastern Sicily has been investigated using 40aftershocks of the December 13 1990, earthquake. The quality factor ofcoda waves (Qc) was estimated in the frequency range 1.5–24 Hz,applying three different methods in time and frequency domains. On thewhole, a clear dependence of Qc on frequency was observed,according to the general law Q = Q0(f/f0)n . Thefrequency dependence relationships obtained from the analysis of codawaves at three lapse time windows (10, 20 and 30 seconds) show that, forall methods, Q0 (Qc at 1 Hz) significantly increases with lapsetime. In particular, Q0 is approximately 20 at short lapse time (10s) and increases to about 70 at longer lapse time (30 s). This is attributedto the fact that larger lapse times involve deeper parts of the crust andupper lithosphere which may be characterized by larger quality factors.Moreover, the value of the exponent n decreases with increasing codalengths from about 1.3 to 0.9, suggesting a decrease in heterogeneity ofthe medium with depth.Finally, Qc-values here found are of the same order as thosereported from other tectonic regions like the Anatolian Highlands orSouthern Spain, while significantly higher than in the neighboring volcanicarea of Mt. Etna.  相似文献   

20.
A Frequency-dependent Relation of Coda Qc for Koyna-Warna Region, India   总被引:1,自引:0,他引:1  
—Attenuation properties of the lithosphere around the Koyna-Warna seismic zone is studied by estimating the coda-Q c from 30 local earthquakes of magnitude varying from 1.5 to 3.8. An average lapse time of 65 sec used in the single scattering model sampled a circular area with an average radius of 114 km. The estimated Q c values show a frequency-dependent relation, Q c =169 f?0.77, and range from 169 at 1 Hz to 1565 at 18 Hz. A comparison of worldwide Q studies reveals that for a large frequency range the Q for active regions is low as compared to that for stable regions. However, South Carolina and Norway are exceptions in that their Q is low in the low frequency range while New England and North Iberia are exceptions as they have a Q value similar to that for active regions like Spain, Turkey, Italy and Garhwal Himalaya (STIH), in the higher frequency range. In contrast to this, the Q for the Koyna-Warna area, which belongs to a stable region, is low in the entire frequency range as compared to the stable regions and similar to the active STIH regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号