首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The normal mode oscillations of thin accretion disks around black holes and other compact objects are analyzed and contrasted with those in stars. For black holes, the most robust modes are gravitationally trapped near the radius at which the radial epicyclic frequency is maximum. Their eigenfrequencies depend mainly on the mass and angular momentum of the black hole. The fundamental g-mode has recently been seen in numerical simulations of black hole accretion disks. For stars such as white dwarfs, the modes are trapped near the inner boundary (magnetospheric or stellar) of the accretion disk. Their eigenfrequencies are approximately multiples of the (Keplerian) angular velocity of the inner edge of the disk. The relevance of these modes to the high frequency quasi-periodic oscillations observed in the power spectra of accreting binaries will be discussed. In contrast to most stellar oscillations, most of these modes are unstable in the presence of viscosity (if the turbulent viscosity induced by the magnetorotational instability acts hydrodynamically).  相似文献   

2.
The instability of axisymmetric flows of ideal incompressible fluid with respect to infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. The problem has been solved for two types of rotation profiles of an unperturbed flow: with zero and nonzero pressure gradients at the flow boundaries. Both rigid and free boundary conditions have been considered. The stability of axisymmetric flows with free boundaries is of great importance in disk accretion problems. Our calculations have revealed a crucial role of the flow pattern near the boundaries in the instability of the entire main flow. When the pressure gradient at the boundaries is zero, there is such a limiting scale of perturbations in azimuthal coordinate that longer-wavelength perturbations grow, while growing shorter-wavelength perturbations do not exit. In addition, for a fixed radial flow extent, there exists a nonzero minimum amplitude of the deviation of the angular velocity from the Keplerian one at which the instability vanishes. For a nonzero pressure gradient at the boundaries, the flow is unstable with respect to perturbations of any scale and at any small deviation of the angular velocity from the Keplerian one.  相似文献   

3.
P. R. Wilson 《Solar physics》1988,117(2):217-226
The most sophisticated attempts to model the convection zone have yielded results in which the angular velocity increases outwards and the largest scales of convection take the form of banana cells aligned with the rotation axis. However, not only does the sign of the angular velocity gradient present problems for dynamo theory, but attempts to detect banana type cells have so far been unsuccessful. Although by no means conclusive, current tracer, spectropic, and radiative data all tend to support models of azimuthal rolls encircling the axis as the fundamental mode.It is shown here that convective upflows and downflows are preferentially generated along the rotation axis and thus initially the large-scale eddies may take the form of azimuthal rolls surrounding the poles. It is then shown that such a system may generate a progressive dynamo wave propagating from pole to equator. Since Parker has shown that an azimuthal magnetic toroid can generate a thermal shadow above it which suppresses its buoyancy, the corresponding temperature deficit so formed becomes the natural site for the downflow of the azimuthal rolls. Thus as the dynamo propagates towards the equator, so will the convective rolls. Finally the compatibility of the most recent helioseismology data with the azimuthal roll model is discussed.Solar Cycle Workshop Paper.  相似文献   

4.
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the non-linear MHD equations, with density and temperature gradients simulating the upper layer of the Sun's convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rotated with a constant angular velocity, the plasma forms a Rankine vortex, with the plasma rotating as a rigid body where the magnetic field is strong, as in the flux tube, while experiencing sheared azimuthal flow in the surrounding convection cells, forming a free vortex. As a result, the azimuthal velocity component has its maximum value close to the outer edge of the flux tube. The azimuthal flow inside the magnetic flux tube and the vortex flow is prograde relative to the rotating cylindrical reference frame. A retrograde flow appears at the outer wall. The most significant convection cell outside the flux tube is the location for the maximum value of the azimuthal magnetic field component. The azimuthal flow and magnetic structure are not generated spontaneously, but decay exponentially in the absence of any imposed rotation of the cylindrical domain.  相似文献   

5.
The phenomenon of negative viscosity-alpha in convectively unstable Keplerian accretion discs is discussed. The convection is considered as a random flow with an axisymmetric mesoscale pattern. Its correlation tensor is computed with a time-averaging procedure using Kley's 2D hydrocode. There is a distinct anisotropy between the turbulence intensities in the radial and azimuthal directions, i.e. the radial velocity rms dominates the azimuthal one. As a consequence, an extra term in the expression for the turbulent transport of angular momentum appears which does not vanish for rigid rotation ('Λ-effect'). It is negative ('inwards transport') and even seems to dominate the positive contribution of the eddy viscosity representing outwards transport of angular momentum. For a turbulence model close to that of the mixing-length theory, the rotational influence on the anisotropy of the turbulence intensities,     , and the covariance  〈 u ' R u ' φ 〉  – representing the angular momentum transport – is computed and compared with the accretion disc simulations. Indeed, the negative angular momentum transport can be explained with the observed dominance of the radial turbulence intensity. If, on the other hand, in turbulence fields the azimuthal intensity would dominate or the turbulence is even isotropic, then we always find a positive transport of the angular momentum.  相似文献   

6.
含粘滞性弱磁化吸积盘的轴对称脉动不稳定性   总被引:1,自引:0,他引:1  
本文讨论了一种含扩散型粘滞的弱磁化等温吸积盘模型,在此模型中研究了扩散型粘滞、垂向磁场Bz和环向磁场B对轴对称脉动不稳定性的影响.结果表明,对于轴对称扰动,一般情况下盘内存在四种轴对称振荡模式.其中二种模式是脉动不稳定的,粘滞和磁场对它们表现为非稳因素;而另外二种模式是稳定的,粘滞和磁场对它们表现为致稳因素.此外我们还注意到,Bz和B主要影响近轴向的脉动不稳定性,扩散型弱粘滞主要影响径向脉动不稳定性.  相似文献   

7.
Sequences of Doppler images of the young, rapidly rotating late-type stars AB Dor and LQ Hya show that their equatorial angular velocity and the amplitude of their surface differential rotation vary versus time. Such variations can be modelled to obtain information on the intensity of the azimuthal magnetic stresses within stellar convection zones. We introduce a simple model in the framework of the mean-field theory and discuss briefly the results of its application to those solar-like stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A model for the angular momentum transfer within the convection zone of a rapidly rotating star is introduced and applied to the analysis of recent observations of temporal fluctuations of the differential rotation on the young late-type stars AB Doradus (AB Dor) and LQ Hydrae (LQ Hya). Under the hypothesis that the mean magnetic field produced by the stellar dynamo rules the angular momentum exchanges and that the angular velocity depends only on the distance s from the rotation axis and the time, the minimum azimuthal Maxwell stress  | BsB φ|  , averaged over the convection zone, is found to range from ∼0.04 to  ∼0.14 T2  . If the poloidal mean magnetic field   B s   is of the order of 0.01 T, as indicated by the Zeeman–Doppler imaging maps of those stars, then the azimuthal mean field   B φ  can reach an intensity of several teslas, which significantly exceeds equipartition with the turbulent kinetic energy. Such strong fields can account also for the orbital period modulation observed in cataclysmic variables and RS Canum Venaticorum systems with a main-sequence secondary component. Moreover, the model allows us to compute the kinetic energy dissipation rate during the maintenance of the differential rotation. Only in the case of the largest surface shear observed on LQ Hya may the dissipated power exceed the stellar luminosity, but the lack of a sufficient statistic on the occurrence of such episodes of large shear does not allow us to estimate their impact on the energy budget of the convection zone.  相似文献   

9.
The radial–azimuthal instability of a hot two-temperature accretion disc with advection is examined in this paper. We find that the inclusion of very little advection has significant effects on two acoustic modes for a geometrically thin, cooling-dominated two-temperature disc, but has no effect on acoustic modes for a geometrically slim, cooling-dominated two-temperature disc. We also find that, when azimuthal perturbations are considered, the stability properties of the disc are different from those in the pure radial perturbation case. An increase of the azimuthal wavenumber will stabilize the acoustic modes but make the viscous and thermal modes more unstable for a geometrically thin, cooling-dominated two-temperature disc. It makes the thermal mode more unstable and the acoustic mode more stable, but only affects the instability of the viscous mode for short-wavelength perturbations for a geometrically slim, cooling-dominated two-temperature disc. For a geometrically slim, advection-dominated two-temperature disc, the increase of the azimuthal perturbation makes the I- and O-modes more stable and the thermal mode more unstable, but has no effect on the viscous mode.  相似文献   

10.
We study the small perturbations in spherical and thin disc stellar clusters surrounding a massive black hole. Because of the black hole, stars with sufficiently low angular momentum escape from the system through the loss cone. We show that the stability properties of spherical clusters crucially depend on whether the distribution of stars is monotonic or non-monotonic in angular momentum. It turns out that only non-monotonic distributions can be unstable. At the same time, instability in disc clusters is possible for both types of distribution.  相似文献   

11.
Within the framework of a non-local time-dependent stellar convection theory, we study in detail the effect of turbulent anisotropy on stellar pulsation stability. The results show that anisotropy has no substantial influence on pulsation stability of g modes and low-order(radial order n_r 5) p modes.The effect of turbulent anisotropy increases as the radial order increases. When turbulent anisotropy is neglected, most high-order(n r 5) p modes of all low-temperature stars become unstable. Fortunately,within a wide range of the anisotropic parameter c_3, stellar pulsation stability is not sensitive to the specific value of c_3. Therefore it is safe to say that calibration errors of the convective parameter c_3 do not cause any uncertainty in the calculation of stellar pulsation stability.  相似文献   

12.
The radial-azimuthal instability of gas-pressure-dominated accretion disk with advection is examined in this paper. We find that the including of very little advection has significant effects on two acoustic modes, which are no longer complex conjugates of each other. They increase the instability of the O-mode and damp that of the I-mode. We also find that when the azimuthal perturbations are considered, the stability properties of disk are different from that in pure radial perturbation case. The increase of azimuthal wave number will stabilize the acoustic modes but make the viscous mode more unstable and does not change the thermal mode very much for optically thin disk. The I-mode is more stable. The O-mode, viscous mode and thermal mode tend to become more unstable with the increase of azimuthal perturbation wavenumber for optically thick disk. For a geometrically slim, advection-dominated disk, the increasing of azimuthal perturbations make thermal mode more unstable and acoustic mode more stable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The instability of axisymmetric flows of inviscid compressible fluid with respect to two-dimensional infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. The compressibility is taken into account for a homentropic flow with an adiabatic index varying over a wide range. The problem has been solved for two angular velocity profiles of an initial axisymmetric flow. In the first case, a power-law rotation profile with a finite enthalpy gradient at the flow edges has been specified. For this angular velocity profile, we show that the instability of sonic and surface gravity modes in a nearly Keplerian flow, when a radially variable vorticity exists in the main flow, can be explained by the combined action of the Landau mechanism and mode coupling. We also show that including a radially variable vorticity makes the limiting exponent in the rotation law at which the unstable surface gravity modes vanish dependent on the fluid compressibility. In the second case, a Keplerian rotation law with a quasi-sinusoidal deviation has been specified in such a way that the enthalpy gradient vanished at the flow edges. We have found than the sonic modes are then stabilized and the flow is unstable only with respect to the perturbations that also exist in an incompressible fluid.  相似文献   

14.
15.
Small levels of turbulence can be present in stellar radiative interiors due to, e.g., the instability of rotational shear. In this paper we estimate turbulent transport coefficients for stably stratified rotating stellar radiation zones. Stable stratification induces strong anisotropy with a very small ratio of radial‐to‐horizontal turbulence intensities. Angular momentum is transported mainly due to the correlation between azimuthal and radial turbulent motions induced by the Coriolis force. This non‐diffusive transport known as the Λ‐effect has outward direction in radius and is much more efficient compared to the effect of radial eddy viscosity. Chemical species are transported by small radial diffusion only. This result is confirmed using direct numerical simulations combined with the test‐scalar method. As a consequence of the non‐diffusive transport of angular momentum, the estimated characteristic time of rotational coupling (≲100 Myr) between radiative core and convective envelope in young solar‐type stars is much shorter compared to the time‐scale of Lithium depletion (∼1 Gyr) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

17.
If one is only interested in the behaviour of a few longlived modes, the simplest model for the evolution to steady nonlinear stellar pulsation is nonresonant interaction. As the coupled-mode equations are generically not dependent upon a particular stellar model, qualitative ideas about the eventual evolution of mode energies give scenarios that depend mainly upon nonlinear coupling constants and linear growth rates. Two linearly unstable modes are considered in the presence of a representative stable or slave mode. One scenario models a double-mode pulsator, without it being necessary that all coupling constants be negative, if only the model is well behaved enough in excluding unbounded solutions and in avoiding finite amplitudes for the slave modes. The influence of driving on slave modes is then such that all slave modes ultimately decay away. Other scenarios show evolution to classic pulsators. A discussion is given of the modelling of a classic Cepheid in a mode which is not the linearly most unstable one. Findings of the present paper show the need for additional theoretical and numerical modelling and a cautious discussion thereof.  相似文献   

18.
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems.  相似文献   

19.
The interaction between a strong stellar wind carrying no intrinsic angular momentum and a surrounding disk nebula is investigated. We analyze the shape and stability of the wind-nebula interface, the strength and direction of the ensuing mass motions and the time scales for nebular disruption. The resultant time scale is given by Equation (44). The dominant physical process is one of nebular accretion onto the central star due to turbulent viscosity in the disk. The turbulence will be driven in the upper layers of the disk by the wind. We note that if the accretion supplies mass for the wind (after the absorption of stellar energy), then the particle fluxes may undergo a runaway increase until the energy or momentum flux in the wind is limited by the total stellar luminosity. This may explain the origin of strong, pre-Main-Sequence winds.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

20.
E. Papini  L. Gizon  A. C. Birch 《Solar physics》2014,289(6):1919-1929
Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization affects the result, however. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within 1 μHz for low-degree modes with frequencies near 3 mHz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号