首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Watari  Shinichi  Detman  T.  Joselyn  J. A. 《Solar physics》1996,169(1):167-179
A large arcade associated with a long-duration soft X-ray emission was observed on May 19, 1992 by the Yohkoh soft X-ray telescope. This large arcade was formed along the inversion line and a filament eruption was observed as part of this event. Also associated with this event were solar energetic particles and an interplanetary shock observed near Earth. This event supports the idea that coronal mass ejections are large-scale eruptions along an inversion line, or a heliospheric current sheet. However, this event implies that present models on eruptions are not sufficient.  相似文献   

2.
A spectacular change in the lower corona on the south-west limb has been found in solar images taken by the Yohkoh soft X-ray telescope. The event is characterized by a large topological change in magnetic field and a large intensity decrease observed after the X1. 1/1B flare on 9 November, 1991. A coronal mass ejection (CME) was observed by the Mark III K-coronameter (MK3) at the HAO/Mauna Loa Observatory. Both the MK3 (white-light) and soft X-ray observations showed that one leg of this CME was located above the flare site. An interplanetary shock associated with this event was observed by Pioneer Venus Orbiter, and, possibly, by IMP-8.Also Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309, U.S.A.  相似文献   

3.
The limb event of 13 August 1973, observed by Skylab in soft X-rays, has all the typical characteristics of the giant post-flare arches observed by HXIS and FCS on board SMM in the 1980s. Skylab images provide us with 4–5 times better angular resolution than the SMM experiments and thus, for the first time, make it possible to distinguish the real fine structure of a giant post-flare arch. The image processing of the 13/14 August 1973 event is now in progress.  相似文献   

4.
132 soft X-ray flare events have been observed with The Aerospace Corporation/Marshall Space Flight Center S-056 X-ray telescope that was part of the ATM complement of instruments aboard Skylab. Analyses of these data are reported in this paper. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-rays emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. Loop structures are found to constitute a fundamental characteristic of flare cores and arcades of loops are found to play a more important role in the flare phenomena than previously thought. Size distributions of these core features are presented and a classification scheme describing the brightest flare X-ray features is proposed. The data show no correlations between the size of core features and: (1) the peak X-ray intensity, as indicated by detectors on the SOLRAD satellite; (2) the rise time of the X-ray flare event, or (3) the presence of a nonthermal X-ray component. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be the result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or re-orientation of these features. Brief comparisons with several theories are presented.  相似文献   

5.
The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by the Solar Submilimeter Telescope (SST) and microwaves (1 – 18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments onboard satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and γ-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterparts only in the higher energy X- and γ-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were difficult to be reconciled with a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.  相似文献   

6.
We analysed simultaneous archival XMM–Newton and Rossi X-ray Timing Explorer observations of the X-ray binary and black hole candidate Swift J  1753.5−0127  . In a previous analysis of the same data, a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disc extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disc is truncated at large radii in the low/hard state. We tested a number of spectral models and found that several of them fit the observed spectra without the need of a soft disc-like component. This result implies that the classical paradigm of a truncated accretion disc in the low/hard state cannot be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disc radius that ranges between ∼6 and 16 gravitational radii, which can be in fact much larger, up to ∼250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disc.  相似文献   

7.
Watari  Shinichi  Watanabe  Takashi 《Solar physics》1998,180(1-2):427-438
A giant post-flare arch observed on 2-3 November 1991 was analyzed using the soft X-ray telescope (SXT) on board Yohkoh and the Mark III (MK3) K-coronameter at the High Altitude Observatory/Mauna Loa Solar Observatory. The rising arch was observed in both soft X-ray and K-corona observations. The estimated rising speed from the MK3 observation was approximately 4 km s-1. A V-shaped depression area was observed on the south side of the giant arch. Change in the K-corona observations was faint while the arch was rising. According to the solar wind observations by the Pioneer Venus Orbiter and the Interplanetary Cometary Explorer, this giant arch event may have been associated with an interplanetary shock.  相似文献   

8.
The origin of a large co-rotating solar particle event in August, 1970, is discussed. Proton data from spacecraft at five widely separated heliocentric longitudes are used to identify two distinct release points which are over 100° apart in solar longitude. Optical flare data shows a high incidence of time-overlapping flares between plage regions close to the two release points, indicating a good connection between them. Unusual X-ray and radio emissions are also observed from these regions. The spectrum of the relativistic electrons in the co-rotating particle event is represented by a power law with index γ ≈ ?4, considerably steeper than that usually observed from a solar flare. It is concluded that there is a large magnetic loop structure connecting points over 100° apart on the Sun which is able to trap energetic protons and electrons from an earlier solar flare. Subsequent release of these particles establishes an intense, long-lived co-rotating event.  相似文献   

9.
ASCA observations of the two Type Ⅱ AGNs,NGC7314 and NGC 7582,show clear variations in the broad X-ray band(0.4-10keV)on short timescales-10^4s.Spectral analysis indicates that they bot have an absorbed hard X-ray component and an unabsorbed soft“excess” component.To clarify the origin of the latter,we made a cross-correlation analysis of the two components.The results show that,for NGC7314,the soft X-ray variability is proportional to that of the hard X-ray component.This indicates that the active nucleus of NGC 7314 must be partially covered and so the soft emission is a “leaking” of the variable hard component.For NGC 7582,there is no detectable variability in the soft component, although there is a definite one in the hard component.This indicates that the variable nucleus of NGC 7582 must be fully blocked by absorbing matter,and the soft emission is most likely the scattered component predicted by the AGN unified model.  相似文献   

10.
ASCA observations of the two Type II AGNs, NGC 7314 and NGC 7582, show clear variations in the broad X-ray band (0.4-10keV) on short timescales - 104s. Spectral analysis indicates that they both have an absorbed hard X-ray component and an unabsorbed soft "excess" component. To clarify the origin of the latter, we made a cross-correlation analysis of the two components. The results show that, for NGC 7314, the soft X-ray variability is proportional to that of the hard X-ray component. This indicates that the active nucleus of NGC 7314 must be partially covered and so the soft emission is a "leaking" of the variable hard component. For NGC 7582, there is no detectable variability in the soft component, although there is a definite one in the hard component. This indicates that the variable nucleus of NGC 7582 must be fully blocked by absorbing matter, and the soft emission is most likely the scattered component predicted by the AGN unified model.  相似文献   

11.
We have conducted an initial search for discrete preflare brightenings as observed in soft X-radiation by Yohkoh. The Yohkoh images allow us to identify, to within a few arc seconds, the location of a preflare event relative to the succeeding flare. Our initial motivation in this study was to search for early coronal brightenings leading to flare effects, as had been suggested by earlier studies; thus we concentrated on Yohkoh limb events. We find no evidence for such early coronal brightenings. Between 15% and 41% of the 131 suitable events matched our criteria for preflare brightening: the same active region; brightening within one hour of the flare peak; preflare brightness less than 30% of the flare peak. In the great majority of the preflare cases, we found that physically separate nearby structures brightened initially. Often these structures appeared to share a common footpoint location with the flare brightening itself. In a few cases the preflare could have occurred in exactly the same structure as the flare.  相似文献   

12.
Pohjolainen  S.  Valtaoja  E.  Urpo  S.  Aurass  H. 《Solar physics》1997,173(1):131-149
Two small radio flares following the great gamma-ray burst on 11 June 1991 are studied. We analyse the different association of emission features at microwaves, decimeter waves, and soft and hard X-rays for the events. The first flare has well-defined emission features in microwaves and soft and hard X-rays, and a faint decimetric signature well after the hard X-ray burst. It is not certain if the decimetric event is connected to the burst features. The second event is characterized by an almost simultaneous appearance of hard X-ray burst maxima and decimetric narrowband drift bursts, but soft X-ray emission is missing from the event. With the exception of the possibility that the soft X-ray emission is absorbed along the way, the following models can explain the reported differences in the second event: (1) Microwave emission in the second event is produced by 150 keV electrons spiraling in the magnetic field relatively low in the corona, while the hard X-ray emission is produced at the beginning of the burst near the loop top as thick-target emission. If the bulk of electrons entered the loop, the low-energy electrons would not be effectively mirrored and would eventually hit the footpoints and cause soft X-ray emission by evaporation, which was not observed. The collisions at the loop top would not produce observable plasma heating. The observed decimetric type III bursts could be created by plasma oscillations caused by electron beams traveling along the magnetic field lines at low coronal heights. (2) Microwave emission is caused by electrons with MeV energies trapped in the large magnetic loops, and the electrons are effectively mirrored from the loop footpoints. The hard X-ray emission can come both from the loop top and the loop footpoints as the accelerated lower energy electrons are not mirrored. The low-energy electrons are not, however, sufficient to create observable soft X-ray emission. The type III emission in this case could be formed either at low coronal heights or in local thick regions in the large loops, high in the corona.  相似文献   

13.
SMITH  Z.  WATARI  S.  DRYER  M.  MANOHARAN  P. K.  McINTOSH  P. S. 《Solar physics》1997,171(1):177-190
It is necessary to identify signatures of solar sources in order to improve predictions of solar-caused geomagnetic activity. This is not a straightforward task as the relationship is not well understood. We apply an algorithm, derived from numerical simulations to identify the solar source of an interplanetary event that was observed by the WIND spacecraft on October 18, 1995 and was followed by a geomagnetic storm. No specific geomagnetic activity had been predicted at Space Weather Operations (SWO) in Boulder, CO, on the basis of earlier solar observations. The algorithm is used to estimate the time and location of the expected solar source of this interplanetary event. A review of solar observations prior to the WIND observations showed that solar activity precursors could be identified. A long-duration-event was seen by GOES in soft X-rays at the same time as a type IV burst was observed in metric radio wavelengths, and a rearrangement of fields was observed by the soft X-ray telescope on the Yohkoh satellite. This suggests that the algorithm is useful for post facto identification of solar sources, and that such combinations of solar activity should be further investigated for use in geomagnetic forecasting.  相似文献   

14.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

15.
A. Gordon Emslie 《Solar physics》1989,121(1-2):105-115
We review the somewhat questionable concept of an isolated flare loop and the various physical mechanisms believed to be responsible, to some degree, for energy transport within the loop structure. Observational evidence suggests a predominant role for high-energy electrons as an energy transport mechanism, and we explore the consequences of such a scenario in some detail, focusing on radiation signatures in the soft X-ray, hard X-ray, and EUV wavebands, as observed by recent satellite observatories. We find that the predictions of flare loop models are in fact in excellent agreement with these observations, reinforcing both the notion of the loop as a fundamental component of solar flares and the belief that electron acceleration is an integral part of the flare energy release process.  相似文献   

16.
An unusual timing and spectral state of a black hole microquasar XTE J1550-564 observed with RXTE is analyzed. Millisecond variabilities are found, which are significantly shorter than the minimum possible time scale in the light curves of black hole binaries, as suggested by Sunyaev & Revnivtsev (2000). The X-ray spectral fitting result indicates that there is an unusual soft component in the spectrum, which may be responsible for the millisecond variabilities. The millisecond variabilities as well as the unusual soft spectral component should be produced from some small, but independent active regions in the accretion disk.  相似文献   

17.
Yasnov  Leonid V.  Karlický  Marian 《Solar physics》2004,219(2):289-299
The growth rate of the upper-hybrid waves with different velocities of superthermal electrons is computed considering a finite temperature of the background plasma and relativistic corrections. Based on these computations two examples of high-frequency zebra structures are interpreted. The sequence of the continuum, zebra structure, and continuum observed in the 29 October 2000, event is explained as an increase and following decrease of the velocity of superthermal electrons in the range of v=0.1–0.3 c. On the other hand, the zebra structure observed during the 18 March 2003 event represents an example with fast electron acceleration.  相似文献   

18.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

19.
The structure and evolution of 26 limb flares have been observed with a soft X-ray telescope flown on Skylab. The results are:
  1. One or more well defined loops were the only structures of flare intensity observed during the rise phase and near flare maximum, except for knots which were close to the resolution of the telescope in size (≈2 arc seconds) and whose structure can therefore not be determined.
  2. The flare core features were always sharply defined during the rise phase.
  3. For the twenty events which contain loops, the geometry of the structure near maximum was that of a loop in ten cases, a loop with a spike at the top in four cases, a cusp or triangle in four cases, and a cusp combined with a spike in another two cases.
  4. Of the fifteen cases in which sufficient data were available to allow us to follow a flare's evolution, five showed no significant geometrical deviation from a loop structure, one displayed little change except for a small scale short-lived perturbation on one side of the loop 10 seconds before a type III radio burst was observed, eight underwent a large scale deformation of the loop or loops on a time scale comparable to that of the flare itself and one double loop event changed in a complex and undetermined manner, with reconnection being one possibility.
Based on observation of the original film, it is suggested that the eight flares which underwent large scale deformations had become unstable to MHD kinks. This implies that these flares occurred in magnetic flux tubes through which significant currents were flowing. It is suggested that the high energy electrons responsible for type III bursts accompanying these flares could have been accelerated by the V x B electric field induced by a small scale short-lived perturbation of parts of a flaring flux tube, similar to the one perturbation which was observed having these characteristics.  相似文献   

20.
Several solar flares have been observed from their onset in C IV 1548.2 and 1–8 Å X-rays using instruments aboard OSO-8. In addition, microwave and H flare patrol data have been obtained for this study. The impulsive brightening in C IV is frequently accompanied by redshifts, interpreted as downflows, of the order of 80 km s-1. The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event studied shows a small blueshift just before reaching maximum intensity, and estimates of the mass flux associated with this upflow through the transition-zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. This event had no observable microwave burst, suggesting that electron beams did not play a major role in the chromospheric and transition-zone excitation. Lastly, our observations suggest that the frequent occurrence of violent dynamical processes at the onset of the flare are associated with the initial energy release mechanism.Currently at High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colo. 80307, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号