首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The differential emission measure (DEM) describes the temperature distribution of the emitting plasma. The DEM distribution allows one to study the physical conditions and the energy of flares in detail (including the mean temperature and the total emission measure). In this paper, we analyze the time changes of the DEM distributions for a selected flare, which has been observed with the RESIK instrument. To calculate the differential emission measure, we used the Withbroe-Sylwester (W-S) iterative algorithm corresponding to the maximum likelihood procedure. The required emission functions were calculated with the CHIANTI package. We calculated the DEM for four available estimates of the ionization equilibrium and coronal composition of plasma.  相似文献   

2.
The distribution of temperature and of emission measure in X-ray active regions relative to the coronal magnetic fields has been investigated. The position of maximum temperature and the position of maximum emission measure were found to lie along the magnetic neutral line, with the maximum temperature tending to lie above the position of an abrupt change in direction of the neutral line. Several simple structural models of these regions are compared to the emission measure. The total magnetic energy and the total emission measure appear to be related by a power law in the regions studied by us.  相似文献   

3.
Recent advances in modelling the radiating character of dynamic laboratory and astrophysical plasmas are applied here in a new examination of the properties of the atmosphere of the classical T Tauri star BP Tau. We analyse archived International Ultraviolet Explorer ( IUE ) UV spectra of BP Tau. We adopt a collisional-radiative model and utilize emission measure (EM) and differential emission measure (DEM) techniques to try to constrain the distribution of emitting material in temperature in the atmosphere of this star. We use spectroscopic diagnostic techniques to probe atmospheric parameters such as electron density, and to set constraints on the volume of emission regions. This work is important for understanding the fundamental properties of BP Tau and other T Tauri stars, and for providing a more complete basis for models of their atmospheres.  相似文献   

4.
The emission measure distribution in the upper transition region and corona of ε Eri is derived from observed emission-line fluxes. Theoretical emission measure distributions are calculated assuming that the radiation losses are balanced by the net conductive flux. We discuss how the area factor of the emitting regions as a function of temperature can be derived from a comparison between these emission measure distributions. It is found that the filling factor varies from ∼0.2 in the mid-transition region to ∼1.0 in the inner corona. The sensitivity of these results to the adopted ion fractions, the iron abundance and other parameters is discussed. The area factors found are qualitatively similar to the observed structure of the solar atmosphere, and can be used to constrain two-component models of the chromosphere. Given further observations, the method could be applied to investigate the trends in filling factors with indicators of stellar activity.  相似文献   

5.
We study the diagnostic capabilities of the high-resolution, Low-Energy Transmission Grating Spectrometer, LETGS, of NASA's planned Advanced X-ray Astrophysics Facility, AXAF, for optically thin stellar coronae. Spectra are simulated on the basis of isothermal and source loop models and are analyzed with particular emphasis on the extraction of the differential emission measure distribution. The AXAF-LETGS is shown to be particularly sensitive for plasma at temperatures between 0.5 and 15 MK. Emission from temperatures in excess of 20 MK can be observed, but the lack of strong spectral lines hampers accurate temperature determinations. We simulate spectra of close binaries to demonstrate the observability of the Doppler effects associated with orbital motions. We present lists of spectral lines that can be used for density diagnostics, and we simulate and compare various spectra at different electron densities.  相似文献   

6.
In solar extreme ultraviolet spectra the He  i and He  ii resonance lines show unusual behaviour and have anomalously high intensities compared with other transition region lines. The formation of the helium resonance lines is investigated through extensive non-local thermal equilibrium radiative transfer calculations. The model atmospheres of Vernazza, Avrett & Loeser are found to provide reasonable matches to the helium resonance line intensities but significantly overestimate the intensities of other transition region lines. New model atmospheres have been developed from emission measure distributions derived by Macpherson & Jordan, which are consistent with SOHO observations of transition region lines other than those of helium. These models fail to reproduce the observed helium resonance line intensities by significant factors. The possibility that non-Maxwellian electron distributions in the transition region might lead to increased collisional excitation rates in the helium lines is studied. Collisional excitation and ionization rates are recomputed for distribution functions with power-law suprathermal tails that may form by the transport of fast electrons from high-temperature regions. Enhancements of the helium resonance line intensities are found, but many of the predictions of the models regarding line ratios are inconsistent with observations. These results suggest that any such departures from Maxwellian electron distributions are not responsible for the helium resonance line intensities.  相似文献   

7.
The RESIK instrument is an X-ray spectrometer with bent crystals onboard the CORONAS-F satellite. It was used to observe the spectra of solar flares, active regions, and quiet corona. During the period of the instrument’s operation, many spectra were collected in four energy channels covering the wavelength range from 3.2 to 6.1 Å. For the present analysis, we selected solar flares of various X-ray classes (B, C, and M in the GOES notation), which were observed during moderate level of solar activity (from January to March 2003). The analysis of the RESIK spectra fulfilled with different techniques allowed us to determine the temperature, emission measure, and temperature distribution of the differential emission measure, as well as to examine their time variability.  相似文献   

8.
We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc relation can be calibrated in terms of the total dust column density of the circumstellar shell and thus the mass-loss rate of late-type giants can easily be derived. Detailed models have been made of the infrared emission of three well-studied Miras: R Cas, IRC 10011, and OH 26.5+0.6, with the emphasis on the shape of the 10 micrometers emission or absorption feature. The results show that the intrinsic shape of the 10 micrometers resonance varies from a very broad feature in R Cas to a relatively narrower feature in OH 26.5+0.6, with IRC 10011 somewhere in between. Possible origins of this variation are discussed. The mass-loss rates from these objects are calculated to be 3 x 10(-7), 2 x 10(-5), and 2 x 10(-4) M Sun yr-1 for R Cas, IRC 10011, and OH 26.5+0.6, respectively. These results are compared to other determinations in the literature.  相似文献   

9.
In this paper we analyse the solar spectral intensities observed with the CHASE grazing incidence telescope and spectrometer flown on NASA's Spacelab 2 Mission in 1985. Our main purpose has been to investigate the sources of error that arise in the application of the differential emission measure technique used to analyse such data. We suggest methods by which these sources of error may be investigated.  相似文献   

10.
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be observed with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 Å have been resolved and identified, including several dielectronic recombination satellite lines to Si xiv and Si xiii lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.  相似文献   

11.
Plasma temperature diagnostics in solar flares and active regions has been carried out using data from the SPIRIT spectroheliograph onboard the CORONAS-F satellite. The temperature distribution of the differential emission measure (DEM) has been determined from the relative intensities of spectral lines recorded in the spectral range 280–330 Å in the period from 2001 to 2005. Analysis of these distributions has led to the conclusion about the existence of active regions with various “characteristic” temperature compositions. The presence of a hot plasma with temperatures logT = 6.8?7.2 in active regions has been established for the first time from XUV spectroscopic data and monochromatic X-ray line images. The DEM distribution for intense long-decay flares has also been obtained for the first time and a similarity of the temperature compositions for flares of different classes at the decay phase has been found. The spectra have been modeled on the basis of the calculated DEMs. The systematic discrepancies between the calculated and measured line intensities are discussed.  相似文献   

12.
Units and methods have been devised to express the photometry of solar XUV images. The source and limb-brightened fluxes are given in terms of the sun's quiet central intensity. Measurements made on this system can be meaningfully compared with solar data and with theoretical predictions. Calculations have been made of the XUV distribution for optically thin solar models and results have been converted onto the measurement system. Photometric measurements have been made from four films lent by the Culham and Leicester Laboratories. Certain inconsistencies suggest that the measurement accuracy is not yet good enough for definitive results. However, there is evidence that: (a) the X-ray emission sources are brighter, relative to the quiet sun, than the longer wave EUV sources; (b) X-ray limb photons all escape (i.e. limb optically thin) but EUV limb emission is affected by absorption; and (c) the observed image diameter fits an emission scale height of 0.05 .  相似文献   

13.
A comparison of three methods used for multi-temperature analysis of solar X-ray spectra is presented. The modified method of conjugate gradients appears to be very efficient for minimizing 2 subject to regularizing (smoothing) constraints. The Withbroe-Sylwester method also ensures good fits, particularly when computations are carried out in wide temperature intervals. Both methods are much faster than the Maximum Entropy method and yield models with an entropy close to that of the Maximum Entropy models. The reliability of revealing the shape of the differential emission measure is discussed. It is shown that the total emission measure and the plasma thermal energy content can be calculated to within a few percent.  相似文献   

14.
15.
《New Astronomy》2002,7(1):35-43
Sets of dual frequency microwave data on selected chromospherically active stars, from the Australia Telescope Compact Array, have been investigated for their auto and cross-correlation effects. Comparison of cross-correlation peak values with theoretical expectation indicates a high degree of real physical connection between the emission at the pairs of frequencies (4.8 and 8.64 GHz) compared. This fact should help constrain models for the emission mechanism.The timescale of observed time-shifts between the emissions at the two frequencies is consistent, in general, with the underlying energization being propagated by magnetohydrodynamic waves in a compact turbulent medium.  相似文献   

16.
1–8 Å, 2–12 Å and 8–20 Å non-flare X-ray flux data and 9.1 cm spectroheliograms for 1237 days during the period July 1966 to June 1970 have been studied to derive physical models of λ < 20 Å X-ray emitting regions on the Sun under quiescent (non-flare) conditions. The preferred regions of emission below 20 Å which coincide with the coronal active regions characterised by enhanced 9.1 cm microwave emission are found to have temperature lying between 1.8 and 3 × 106 K, emission measure 1049–1050 and electron density 109-1010 per cc. The average area of an active region is 1020 cm2. A slow gradient of temperature and electron density is seen to exist around a region of peak activity, both temperature and electron density decreasing outwards. Based on the derived physical model of the emitting regions a new method is presented for calculating X-ray flux and spectral energy distribution in this wave length region using daily 9.1 cm solar spectroheliograms. The calculated values are in good agreement with the observed values.  相似文献   

17.
D. M. Horan 《Solar physics》1971,21(1):188-197
X-ray emission from seventeen X-ray flares was analyzed to obtain electron temperatures and emission measures associated with the source region in the solar corona. The source region was assumed to be isothermal with a Maxwellian electron velocity distribution.Flares which were characterized by a rapid initial X-ray flux increase were found to also have a rapid initial rise in electron temperature and emission measure. Flares which were characterized by a gradual initial X-ray energy flux increase were found to have a less rapid initial rise in electron temperature and emission measure. In all X-ray flares studied the peak temperature chronologically preceded the peak X-ray flux and the peak flux never came after the peak emission measure.Based on a dissertation submitted to The Catholic University of America, Washington, D.C.  相似文献   

18.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

19.
Kirsch  E.  Münch  J. W. 《Solar physics》1974,36(2):459-472
The NRL SOLRAD 10 satellite carries six ionization chambers to measure solar X-radiation in the 0.5 to 60 Å wavelength band. The X-ray emission spectrum in this range is determined by the derivative of the coronal emission measure (∫ N e 2 dV) with respect to temperature when the thermal processes of bremsstrahlung, radiative recombination and line radiation are considered. If a simple model for this differential emission measure is used and detector responses to the calculated spectra are fitted to the SOLRAD data by a least squares method, the differential emission measure can be obtained for temperatures between 2 × 106K and 64 × 106K. Data during quiet and flaring periods are analyzed and the general behavior of the differential emission measure during flares is presented. This analysis is based on experimental measurements of the efficiencies of the SOLRAD detectors.  相似文献   

20.
Using the recently available exact computations of the scattering efficiencies of spheroidal particles numerical calculations of the extinction and polarization curves have been made for a distribution of particle sizes, shapes and orientations. The results are presented and compared with the observed interstellar extinction and polarization. Possible models for interstellar dust with nonspherical grains have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号