首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive study of the IMP-6 and IMP-8 plasma and radio wave data has been performed to try to find electron plasma oscillations associated with type III radio noise bursts and low energy solar electrons. This study shows that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. In nearly four years of observations only one event was found in which electron plasma oscillations are clearly associated with solar electrons. Numerous cases were found in which no electron plasma oscillations with field strengths greater than 1 V/m could be detected even though electrons from the solar flare were clearly detected at the spacecraft.For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare, the electric field strength is very small, only about 100 V/m. This field strength is about a factor of ten smaller than the amplitude of electron plasma oscillations generated by electrons streaming into the solar wind from the bow shock. Electromagnetic radiation, believed to be similar to the type III radio emission, is also observed coming from the region of more intense electron plasma oscillations upstream of the bow shock. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation. Possible ways of resolving these difficulties are discussed.  相似文献   

2.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

3.
We report detailed observations of the herringbone (HB) fine structure on type II solar radio bursts. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. We determine the characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. Our data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. We conclude that HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.Now at: Department of Physics and Astronomy, University of Iowa, U.S.A.Now at Anglo-Australian Observatory, Sydney, Australia.  相似文献   

4.
Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

5.
The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (a) the occurrence rate of bursts falls off with increasing flux, S, according to the power law S –1.5, and (b) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the Earth-Sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.Presently at the University of Maryland, College Park, Maryland.  相似文献   

6.
The mechanisms for the transformation of plasma waves into radiation near the fundamental and second harmonic of the plasma frequency are reviewed and equations are given for both the emission and absorption coefficients for these mechanisms. Near the fundamental the process is the scattering of plasma waves on the polarization clouds of ions and the absorption coefficient can be negative, i.e. the radiation can be amplified. Near the second harmonic the process is the combination of two excited plasma waves for which the absorption coefficient can only be positive. These results are applied to construct models of the radiation source for type III solar radio bursts both at high frequencies where the fundamental is dominant and at low frequencies where the second harmonic is dominant using two model plasma wave spectra, one being one-dimensional, the other isotropic. At high frequencies second harmonic radiation is used to determine the source area for a given energy density in plasma waves W p . The source size and W p are detrmined uniquely for a given plasma wave spectrum by tracing rays in a model source taking into account amplification of the fundamental. The results for a strong source at the 80 MHz plasma level with a ratio of emissivities of the fundamental to second harmonic P(ω p )/P(2ω p ) ≈ 10 are that the source with a one-dimensional plasma wave spectrum is about 14000 km in diameter and W p = 10?6.52 erg cm?3, and the source with an isotropic distribution of plasma waves is about 200 km in diameter and W p = 10?6.3 erg cm?3. It is shown that at low frequencies, where amplification of the fundamental is no longer possible, second harmonic radiation must be dominant and thus very little information about the source can obtained from the radiation.  相似文献   

7.
D. F. Smith 《Solar physics》1970,15(1):202-221
The possibilities for type III burst excitors are reviewed and it is concluded that particle streams are the most likely excitor. Possible methods of resolving the apparent discrepancy between the number of particle events observed in interplanetary space in the vicinity of the earth and the number of type III bursts are indicated. Observations relevant to the excitor are reviewed and translated into requirements for a theory of the exciting stream. Possibilities for an electron stream excitor are considered and it is concluded that, while such an excitor cannot be eliminated at the present time, there are definitely theoretical difficulties with it which can be overcome only by seemingly ad hoc and improbable assumptions. Possibilities for a proton stream excitor are examined and it is found that all theoretical difficulties can be overcome in a natural manner. The number of 50 MeV protons required to explain a strong type III burst is estimated conservatively as 3 × 1025 which, after diffusion in interplanetary space, would be undetectable by the instruments flown thus far. This number is consistent with some theoretical ideas about the flare mechanism and also with present observational data.This paper concerns major type III bursts that have a measurable effect at low frequencies ( 10 MHz). The author is aware of the existence of different kinds of fast drift bursts which are fainter and mostly limited to the m-wave region (de Groot, 1970). These may be due to different kinds of excitors.Postdoctoral Fellow on the U.S.-U.S.S.R. Cultural Exchange Program.  相似文献   

8.
Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters HELIOS-A and HELIOS-B. The burst beginning at 19:22 UT on March 28, 1976 has been located from the intersection of the source directions measured at each spacecraft, and from burst arrival time differences. The source positions range from 0.03 AU from the Sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory, and the exciter velocity (=0.13c) were determined directly, without the need to assume a density model as has been done with single-spacecraft observations. The separation of HELIOS-A and -B has also provided the first measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (HELIOS-B) was 3–10 dB greater than that from 60° west of the source (HELIOS-A).  相似文献   

9.
The time structure of solar radio decametre Type III bursts occurring during the periods of enhanced emission is investigated. It is found that the time profiles can take a variety of forms of which three distinct types are the following: (1) profiles where the intensity rises to a small but steady value before the onset of the main burst, (2) the intensity of the main burst reduces to a finite level and remains steady before it decays to the base level, (3) the steady state is present during the rise as well as the decay phase of the main burst. It is shown that these profiles are not due to random superposition of bursts with varying amplitudes. They are also probably not manifestations of fundamental-harmonic pairs. Some of the observed time profiles can be due to superposition ot bursts caused by ordered electron beams ejected with a constant time delay at the base of the corona.  相似文献   

10.
Type III solar radio bursts are investigated by modelling the propagation of the electron beam and the generation and subsequent propagation of waves to the observer. Predictions from this model are compared in detail with particle, Langmuir wave, and radio data from the ISEE-3 spacecraft and with other observations to clarify the roles of fundamental and harmonic emission in type III radio bursts. Langmuir waves are seen only after the arrival of the beam, in accord with the standard theory. These waves persist after a positive beam slope is last resolved, implying that sporadic positive slopes persist for some time, unresolved but in accord with the predictions of stochastic growth theory. Local electromagnetic emission sets in only after Langmuir waves are seen, in accord with the standard theory, which relies on nonlinear processes involving Langmuir waves. In the events investigated here, fundamental radiation appears to dominate early in the event, followed and/or accompanied by harmonic radiation after the peak, with a long-lived tail of multiply scattered fundamental or harmonic emission extending long afterwards. These results are largely independent of, but generally consistent with, the conclusions of earlier works.  相似文献   

11.
All four large EUV bursts (peak 10–1030 Å flux enhancements 2 ergs cm–2 s–1 at 1 AU as deduced from sudden frequency deviations), for which there were available concurrent white light observations of at least fair quality, were detected as white light flares. The rise times and maxima of the white light emissions coincided with rise times and maxima of the EUV bursts. The frequency of strong EUV bursts suggests that white light flares may occur at the rate of five or six per year near sunspot maximum. All of the white light flare areas coincided with intense bright areas of the H flares. These small areas appeared to be sources of high velocity ejecta in H. The white light flares occurred as several knots or patches of 2 to 15 arc-sec diameter, with bright cores perhaps less than 2 arc-sec diameter (1500 km). They preferred the outer penumbral borders of strong sunspots within 10 arc-sec of a longitudinal neutral line in the magnetic field. The peak continuum flux enhancement over the 3500–6500 Å wavelength range is about the same order of magnitude as the peak 10–1030 Å flux enhancement.  相似文献   

12.
The procedure developed in Smith (1974) to model the radiation source for type III bursts is modified to include scattering of radiation in the source itself. Since the inhomogeneities in the source must have the same statistical properties as the inhomogeneities used in tracing radiation from the source to the observer, these two parts of the type III problem are no longer uncoupled. Thus we use inhomogeneities consistent with the scattering inhomogeneities of Steinberg et al. (1971) and Riddle (1974) and apply the procedure to an archetype ‘fundamental-harmonic’ pair observed at Culgoora on 28 September, 1973 at 0319 UT. We find that it is impossible to model this burst with a source which is homogeneous in the sense that every part of the source has the same energy density in plasma waves. The density inhomogeneities in the source severely hamper amplification of the supposed fundamental. Possible ways out of this dilemma are discussed, including second harmonic pairs and a source with an inhomogeneous distribution of plasma waves. It is concluded that none of the possibilities are completely satisfactory to explain present observations and suggested that critical observations are missing.  相似文献   

13.
Takakura  Tatsuo  Yousef  Shahinaz 《Solar physics》1974,39(2):451-458
The harmonic ratios of a large sample of inverted-U bursts are found to be smaller at the turning frequency than at the starting frequency. Ratios <2.0 are explained by postulating that the lowest fundamental frequencies emitted are prevented from escaping from the corona by an evanescent region between the source and the observer. This concept is used to construct a source model for inverted-U bursts where the density is lower inside a magnetic flux tube than it is outside.  相似文献   

14.
Flux density spectra have been determined for ninety-one simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10–14 W m–2 Hz–1. The primary factor controlling the spectral peak frequency of these bursts appears to be variation in intrinsic power radiated by the source as the exciter moves outward from the Sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.  相似文献   

15.
A simple test of the applicability of quasilinear theory is presented to be applied to measured velocity distributions of energetic electrons associated with solar type III bursts or similar particle streams: it consists in taking the time integral of these distributions after removing the background. If quasilinear diffusion of weak plasma turbulence applies to the particle dynamics and if all other losses are neglected, the time integral of the distributions injected at the source of the streaming particles is recovered. In particular, if these distributions are approximated by hot Maxwellian ones, direct estimates of the initial temperatures are retrieved. Further analysis might even permit an experimental evaluation of the relative effects of collision and scattering losses.  相似文献   

16.
T. Takakura 《Solar physics》1982,75(1-2):277-292
It is demonstrated by a numerical simulation that both the whistler waves and plasma waves are excited by a common solar electron beam. The excitation of the whistler waves is ascribed to the loss-cone distribution which arises at a later phase of the passage of the beam at a given height due to a velocity dispersion in the electron beam with a finite length. It is highly probable that the fundamental of type III bursts are caused by the coalescence of the whistler waves and the plasma waves excited by a common electron beam, although the plasma waves must suffer induce scatterings by thermal ions to have small wave numbers before the coalescence to occur.  相似文献   

17.
Gubchenko  V. M.  Zaitsev  V. V. 《Solar physics》1983,87(2):391-399
We have made two-dimensional maps of the slowly varying component (SVC) of solar radio emission at a frequency of 34.5 MHz with half power beam width of 26/40. It is found that a majority of SVC sources have brightness temperatures of the order of 0.5 × 106 K and half power widths of about 4 R . The shifts in the positions of the centroids of the SVC sources from the center of the Sun were in the range 1.5 to 2 R . These observations can be explained in terms of thermal emission from coronal regions of enhanced density and temperature located at distances of 1.5 to 2 R from the center of the Sun.  相似文献   

18.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

19.
The generation of energetic electrons is always associated with the solar flares which occur within the sunspot groups that are highly active in emitting type I noise storms. The number of the solar flares which are associated with the distinct electron events observed at the earth tends to increase in association with the westward movement of these active groups. This tendency is not contradictory to the close association between electron producing solar flares and type I active regions if we take into account the limited directivity of type I noise storms associated with these sunspot groups.The acceleration of the energetic electrons associated with solar flares seems to be closely related to the type I active regions where the enormous numbers of suprathermal electrons exist and play a role in generating these radio noise storms.NAS-NRC Associate with NASA.  相似文献   

20.
The experimental and theoretical status of type III solar radio emission is considered in detail. We emphasize very recent developments which are relevant to the underlying plasma physics. In particular we discuss the identity of the sub-megahertz emissions as fundamental, or second harmonic, the degree of correlation between emissivities, electron streams, and plasma (Langmuir) waves, paradoxes concerned with the time-ordering of these phenomena, and the role of background density irregularities and ion-acoustic turbulence in the solar wind. From the theoretical point of view we discuss the current picture of the underlying Langmuir turbulence, including such effects as the interaction between Langmuir waves and stream electrons, induced scatter off ions, and strong turbulence effects such as modulational instability and soliton collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号