首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Mercier 《Solar physics》1976,46(2):499-500
On 1 July 1971, about ten groups of type III bursts were observed with high time resolution (10?1 sec) with the 169 MHz Nançay radioheliograph. Each group consists of two or several bursts, appearing successively from E to W in all cases, with very short delays. The analysis of successive E-W profiles allowed us to show that, for each event:
  1. the delay between maximum times of the sources was in the range 0.3–0.8 s and that their time profiles were very similar.
  2. the mutual distance between sources was ~1.5 × 105 km.
Explanations by simultaneous emission at the fundamental and harmonic of the local plasma frequency, or by reflexion of electromagnetic radiations at boundary at a dense region are shown to be inconsistent with the observations. We suggest that distinct exciters are simultaneously accelerated at low levels in very close regions and propagate upward along very widely diverging magnetic field lines. This divergence could be related to the existence of large scale magnetic connexions in the corona as revealed by XUV observations. We stress the point that this kind of structure in type III bursts groups, visible only with high time resolution, may have led in the past to erroneous conclusions concerning diameter and decay time of type III bursts because of both spatial and temporal overlapping.  相似文献   

2.
Abstract— U-Th-Pb, Rb-Sr, and Sm-Nd isotopic signatures of corroded, but unaltered, black glassy tektites from Cretaceous-Tertiary (K-T) boundary rock on Haiti are not consistent with their derivation from an impact on MOR-derived oceanic crust or continental regions involving middle Proterozoic or older crustal material. Two single-grain and two batches of these tektites yielded present-day ?Nd = ?3.0 to ?3.4, ?Sr = +55 to 56, 206Pb/204Pb = 18.97; 207Pb/204Pb = 15.74; 208Pb/204Pb = 38.91 values, and Pb, Rb, Sr, Sm, and Nd concentrations of ~6, ~45, ~535, ~4.7, and ~22 ppm, respectively. Initial ?Nd and ?Sr values for the tektites are different from time-integrated Nd-Sr isotopic signatures for almost all oceanic crustal types. Age-corrected Pb isotopic values are similar to those for pelagic sediments with distinctly higher 207Pb/204Pb values compared to MORB. However, these results do not exclude the possibility of an oceanic impact site, if the tektites were derived from fine-grained sediments that typically overlie such regions, although other mineralogic and chemical evidence from K-T boundary debris suggests otherwise. Moreover, the Nd average crustal residence age of ~ 1080 Ma (TDM) for the black tektites eliminates impact sites on continental crustal regions involving middle Proterozoic or older rocks, or sedimentary rocks largely derived from them. Previously reported major and trace element data from the black tektites suggest that the source material was possibly sedimentary with a composition similar to average shale or graywacke. If this is the case, then the Nd isotopic data suggest that the source rocks were not older than Silurian (TCHUR = 400 Ma) in age, and were composed largely of young (< 1080 Ma) crustal material. Of the suspected K-T boundary impact sites, both the Manson (Iowa) and Chicxulub (Yucatan) structures occur in suitable lithologies to yield the Haitian black tektites, although neither structure has as yet proven to be the tektite source.  相似文献   

3.
Carl Sagan 《Icarus》1973,19(3):350-352
Even with slow rates of technological advance, extraterrestrial civilizations substantially in our future will have technologies and laws of nature currently inaccessible to us, and will probably have minimal interest in communicating with us. If this communication horizon is ~103 years in our future, other crude estimates previously published imply that only ~10?4 of the technical civilizations in the Galaxy are accessible to us. The mean distance to the nearest such society is then ~104 light years. Radio detection of extraterrestrial intelligence seems to imply either (1) much larger telescopes or antenna arrays for the detection of civilizations within our Galaxy than now exist; or (2) attention to the nearer extragalactic systems, with smaller radio telescopes, to detect the very small fraction of very advanced societies which may choose to make their presence known to emerging civilizations via antique communication modes.  相似文献   

4.
Abstract— We report the first measurements of lithium and boron isotope ratios and abundances measured in “gently separated” presolar SiC grains. Almost all analyses of presolar SiC grains since their first isolation in 1987 have been obtained from grains that were separated from their host meteorite by harsh acid dissolution. We recently reported a new method of “gently” separating the grains from meteorites by using freeze‐thaw disaggregation, size, and density separation to retain any nonrefractory coatings or alteration to the surfaces of the grains that have been acquired in interstellar space. Nonrefractory coats or amorphized surfaces will almost certainly be removed or altered by the traditional acid separation procedure. High Li/Si and B/Si ratios of up to ~10?2 were found implanted in the outer 0.5 μm of the grains dropping to ~10?5 in the core of the grains. 7Li/6Li and 11B/10B ratios indistinguishable from solar system average values were found. Analyses obtained from SiC grains from the acid dissolution technique showed isotope ratios that were the same as those of gently separated grains, but depth profiles that were different. These results are interpreted as evidence of implantation of high velocity (1200–1800 km s?1) Li and B ions into the grains by shock waves as the grains traveled through star‐forming regions some time after their condensation in the outflow of an AGB star that was their progenitor. The results are in line with spectroscopic measurements of Li and B isotope ratios in star‐forming regions and may be used to infer abundances and isotopic sources in these regions.  相似文献   

5.
Abstract— We analyzed the compositional profiles of coexisting orthopyroxenes and spinels in six diogenite samples from the Antarctic meteorite collection and used the data to constrain their thermal histories. The closure temperatures of Fe2+‐Mg exchange between spinel and orthopyroxene in these samples vary between ~630 and 830 °C. However, those in other diogenite samples, for which the compositional data are available in the literature, extend up to ~1125 °C. This wide range of closure temperatures suggests repeated excavation of the diogenites from their original sites over a long time interval during cooling. The orthopyroxene grains were found to be homogeneous in composition while two of the relatively large spinel grains in the samples Elephant Moraine (EET) 87530 and Thiel Mountains (TIL) 82410 showed compositional zoning near the rim. Modeling of the spinel zoning in TIL 82410 suggests that it developed during cooling under a regolith or ejecta blanket, possibly at a depth of ~80–120 m, and that the spinel composition was homogeneous at ~900 °C. A nonlinear cooling model in which the cooling rate is given by ηT(K)2, with η = 5.8 times 10?3 K?1Ma?1, leads to simulated retrograde zoning profile in spinel which match the observed profile in TIL 82410 very well.  相似文献   

6.
The dependences of various parameters for S-and C-type supernova remnants (SNRs) on their diameters are investigated. Only SNRs with D≤40 pc that expand initially within H II regions and, subsequently, in dense media are considered. The expansion velocities and thermal electron densities of these SNRs were found to decrease with increasing diameter, on average, as D ?1 and D ?0.5, respectively. H II regions hamper the detection of SNRs; this effect is particularly pronounced in regions with 270°≤1≤300° and 330°≤1≤360°. The X-ray luminosities of SNRs born in dense media increase by an order of magnitude when their diameters reach ~30 pc. After the SNR diameters reach ~40 pc, their radio and X-ray luminosities decrease sharply.  相似文献   

7.
The composition, energy and angular characteristics of upward flowing ionospheric ions at altitudes greater than ~ 20,000 km have been studied by means of the PROGNOZ-7 ion composition experiment. Very narrow beams, having widths corresponding to a mirroring altitude of the order a few thousand kilometers or less, may be found up to altitudes exceeding 30,000 km on the nightside. At much higher altitudes and in regions connected to the dayside/flank boundary layer and plasma mantle, the beams are much broader than expected from adiabatic particle motions from an ionospheric source/acceleration region, suggesting that pitch angle scattering or transverse acceleration processes are present there. Considerable mass dispersion effects have also been observed in some upward flowing ionospheric ion beams. The peak energy for the O+ ions may differ by several keV compared to that for the H+ ions in one and the same ion beam at altitudes above ~ 20,000 km. The O+ ions in these beams have gained considerably more energy than H+ in the acceleration process. Many examples with a much higher O+ than H+ content in the beam have been observed. Possible mechanisms giving rise to the observed effects are discussed, one being several kV of potential drop below the neutral H, O-crossover altitude (500–1500 km). At altitudes where the upflowing ionospheric ions are intermixed with magnetosheath ions, mass dispersion effects are also observed. This dispersion often appears to be the result of a velocity filtering effect caused by the dawn-dusk electric field (earthward convection).  相似文献   

8.
Variability on time scales δt < t is observed on numerous occasions in the afterglows of cosmic gamma-ray bursts (GRBs). It is well known that the radiation originating in an external shock produced by the interaction of an ultrarelativistic jet with the ambient interstellar medium should not contain such variability within the framework of simple models. The corresponding constraints were established by Ioka et al. (2005) and, in some instances, are inconsistent with observations. On the other hand, if the motion is not relativistic, then the rapid afterglow variability can be explained much more easily. Various estimates of the transition time to a nonrelativistic motion in a GRB source are discussed in this connection. It has been shown that this transition should occur on an observed time scale of ~10 days. In the case of a higher density of the surrounding material, ~102?104 cm?3, or a stellar wind with ? ~ 10?5?10?4 M yr?1, the transition to a nonrelativistic motion can occur on a time scale of ~1 day. Such densities may well be expected in star-forming regions and around massive Wolf-Rayet stars.  相似文献   

9.
The launch of the P78-2 (SCATHA) satellite in January 1979 has provided a new opportunity to study the energetic ion composition in the high altitude equatorial regions of the earth's magnetosphere. In particular detailed pitch angle distributions were obtained as a function of ion species and energy. The energies measured range from ~ 90 to 250 keV/nucleon for Z ? 2. Data are presented which were acquired in late March and early April 1979. The relative abundance of He and CNO nuclei are found to be ~ 10?2 and 5 × 10?4 respectively at L ? 5.5. Only an upper limit on the relative abundance of Fe group nuclei of < 3 × 10?7 was obtained. The angular distributions of the heavy ions was found to be very steep for BB0 < 1.5 and then to flatten markedly.  相似文献   

10.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   

11.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

12.
Abstract— Among the three large camera networks carrying out fireball observations through the seventies and eighties, the “European Fireball Network” is the last one still in operation. The network today consists of more than 34 all-sky and fish-eye cameras deployed with ~100 km spacing and covering an area of ~106 km2, in the Czech and Slovak Republics, Germany, as well as parts of Belgium, Switzerland, and Austria. Network operation results in ~10 000 image exposures per year, which represent on average 1200 h of clear sky observations—as imaging periods are restricted due to daylight, moonlight, and clouds. The cameras detect currently large meteors at a rate of ~50 per year; this is in good agreement with the encounter rates determined in previous fireball studies. From sightings of “meteorite candidates” (fireballs that may have deposited meteorites) and meteorite recoveries in the network area, we estimate that 15% of the influx of meteoritic matter is currently observed by the cameras, whereas <1% is recovered on the ground. Issues to be addressed by future fireball observations include the study of very large meteoroids (>1000 kg) for which statistics are currently very poor and an examination of their relationship to NEOs (near-Earth objects) identified by current NEO search programs.  相似文献   

13.
R.T. Clancy  D.O. Muhleman 《Icarus》1985,64(2):157-182
Microwave spectra of carbon monoxide (12CO) in the mesosphere of Venus were measured in December 1978, May and December 1980, and January, September, and November 1982. These spectra are analyzed to provide mixing profiles of CO in the Venus mesosphere and best constrain the mixing profile of CO between ~ 100 and 80 km altitude. From the January 1982 measurement (which, of all our spectra, best constrains the abundance of CO below 80 km altitude) we find an upper limit for the CO mixing ratio below 80 km altitude that is two to three times smaller than the stratospheric (~65 km) value of 4.5 ± 1.0 × 10?5 determined by P. Connes, J. Connes, L.D. Kaplan, and W. S. Benedict (1968, Astrophys. J.152, 731–743) in 1967, indicating a possible long-term change in the lower atmospheric concentration of CO. Intercomparison among the individual CO profiles derived from our spectra indicates considerable short-term temporal and/or spatial variation in the profile of CO mixing in the Venus mesosphere above 80 km. A more complete comparison with previously published CO microwave spectra from a number of authors specifies the basic diurnal nature of mesospheric CO variability. CO abundance above ~ 95 km in the Venus atmosphere shows approximately a factor of 2–4 enhancement on the nightside relative to the dayside of Venus. Peak nightside CO abundance above ~95 km occurs very near to the antisolar point on Venus (local time of peak CO abundance above ~95 km occurs at 0.6?0.6+0.7 hr after midnight on Venus), strongly suggesting that retrograde zonal flow is substantially reduced at an altitude of 100 km in the Venus mesosphere. In contrast, CO abundances between 80 and 90 km altitude show a maximum that is shifted from the antisolar point toward the morningside of Venus (local time of peak CO abundance between 80 and 90 km occurs at 8.5 ± 1.0 hr past midnight on Venus). The magnitude of the diurnal variation of CO abundance between 80 and 90 km is again, approximately a factor of 2–4. Disk-averaged spectra of Venus do not determine the exact form for the diurnal distribution of CO in the Venus mesosphere as indicated by comparison of synthetic spectra, based upon model distributions, and the measured spectra. However, the offset in phase for the diurnal variation for the >95 km and 80–90-km-altitude regions requires an asymmetric (in solar zenith angle) distribution.  相似文献   

14.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

15.
On 11 April 2012, a strong earthquake of magnitude Ms8.6 occurred near the west coast of Northern Sumatra, Indonesia. In this paper, we investigated the morphological characteristics of anomalous variations in Global Positioning System Total Electron Content (GPS TEC) prior to the earthquake by the method of the statistical analysis. It was found the TEC anomaly was firstly decreased, then, it became more enhanced, finally, it decreased, the peak of anomaly enhancement arose from 13:00–17:00 LT on April 5 lasted for ~4 hours and the anomalous ionospheric regions extended to ~40° in longitude and ~20° in latitude, its location did not coincide with the vertical projection of the epicenter, but lies at the north and south of the geomagnetic equator, meanwhile, corresponding ionospheric anomalies are also observed in the magneto conjugate region. Potential causes of these results are discussed,eliminating the ionospheric anomalies that may be caused by solar activities and magnetic storms, it can be concluded that the observed obvious anomalous variation in GPS TEC on April 5 were possibly related to the earthquake.  相似文献   

16.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

17.
We present a multiwavelength study of the formation of massive stellar clusters, their emergence from cocoons of gas and dust, and their feedback on surrounding matter. Using data that span from radio to optical wavelengths, including Spitzer and Hubble Space Telescope ACS observations, we examine the population of young star clusters in the central starburst region of the irregular Wolf–Rayet galaxy IC4662. We model the radio-to-infrared (IR) spectral energy distributions of embedded clusters to determine the properties of their Hii regions and dust cocoons (sizes, masses, densities, temperatures), and use near-IR and optical data with mid-IR spectroscopy to constrain the properties of the embedded clusters themselves (mass, age, extinction, excitation, abundance). The two massive star-formation regions in IC4662 are excited by stellar populations with ages of ~4 Myr and masses of ~3×105 M (assuming a Kroupa initial mass function). They have high excitation and subsolar abundances, and they may actually be comprised of several massive clusters rather than the single monolithic massive compact objects known as ‘super star clusters’ (SSCs). Mid-IR spectra reveal that these clusters have very high extinction values, A V ~20–25 mag, and that the dust in IC4662 is well mixed with the emitting gas, not in a foreground screen.  相似文献   

18.
We have identified 22 galaxies with photometric redshifts zph=5–7 in the northern and southern Hubble Space Telescope deep fields. An analysis of the images of these objects shows that they are asymmetric and very compact (~1 kpc) structures with high surface brightness and absolute magnitudes of MB≈?20m. The average spectral energy distribution for these galaxies agrees with the distributions for galaxies with active star formation. The star formation rate in galaxies with zph=5–7 was estimated from their luminosity at λ=1500 Å to be ~30 Myr?1. The spatial density of these objects is close to the current spatial density of bright galaxies. All the above properties of the distant galaxies considered are very similar to those of the so-called Lyman break galaxies (LBGs) with z ~ 3–4. The similarity between the objects considered and LBGs suggests that at z ~6, we observe the progenitors of present-day galaxies that form duringmergers of protogalactic objects and that undergo intense starbursts.  相似文献   

19.
We consider the formation mechanisms of “negative”-intensity spots in the radio band for various astrophysical conditions. For wavelengths λ<1.5 mm, the regions of reduced temperature (relative to the cosmic microwave background radiation, CMBR) are shown to be produced only by high-redshift objects moving at peculiar velocities. The main processes are CMBR Thomson scattering and bremsstrahlung. We show that the effect δT/T can be ~10?5 in magnitude. We derive simple analytic expressions, which allow the redshifts, electron densities, and linear sizes of these regions to be estimated from observed spectral and spatial parameters. Additional observational methods for refining these parameters are outlined.  相似文献   

20.
Abstract— New model organic microparticles are used to assess the thermal ablation that occurs during aerogel capture at speeds from 1 to 6 km s?1. Commercial polystyrene particles (20 μm diameter) were coated with an ultrathin 20 nm overlayer of an organic conducting polymer, polypyrrole. This overlayer comprises only 0.8% by mass of the projectile but has a very strong Raman signature, hence its survival or destruction is a sensitive measure of the extent of chemical degradation suffered. After aerogel capture, microparticles were located via optical microscopy and their composition was analyzed in situ using Raman microscopy. The ultrathin polypyrrole overlayer survived essentially intact for impacts at ~1 km s?1, but significant surface carbonization was found at 2 km s?1, and major particle mass loss at ≥3 km s?1. Particles impacting at ~6.1 km s?1 (the speed at which cometary dust was collected in the NASA Stardust mission) were reduced to approximately half their original diameter during aerogel capture (i.e., a mass loss of 84%). Thus significant thermal ablation occurs at speeds above a few km s?1. This suggests that during the Stardust mission the thermal history of the terminal dust grains during capture in aerogel may be sufficient to cause significant processing or loss of organic materials. Further, while Raman D and G bands of carbon can be obtained from captured grains, they may well reflect the thermal processing during capture rather than the pre‐impact particle's thermal history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号