首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于SWAT模型的淮河上游流域设计洪水修订   总被引:1,自引:0,他引:1  
变化环境下洪水序列的一致性遭到破坏,引发基于统计原理计算的设计洪水可靠性下降,亟需开展非一致性条件下的设计洪水修订研究.以淮河上游流域为研究区域,运用Pettitt检验法和滑动t检验法综合检测年最大洪峰流量序列突变点,在此基础上,采用SWAT分布式水文模型对变异前的洪峰与洪量序列进行还现,利用径流深的模拟结果修订设计洪...  相似文献   

2.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

3.
Changing trends of peak flood and flood duration in the Wujiang River Basin are detected with the help of the Mann–Kendall test and the Pettitt analysis during the past 50 years. Results indicate that the peak flood and the flood duration at Lishi Station have different changing features. The peak flood showed only marginally increasing trend, whereas the flood duration exhibited decreasing trend at the significance level of 90%. The result shows a weak positive correlation between the peak flood and the flood duration. The changes of flood duration are influenced by the total rainfall duration, which is in downward trend at significance level 90%. In addition, the changing trends of peak flood are similar to the total rainfall amount. In the change‐point analysis, it was found that the change points for the peak flood and flood duration series were in the years 1993 and 1966, respectively. Human activities such as the construction of reservoirs were the main driving forces causing the change of flood duration. The periodicity of the peak flood during the period 1955–2007 at Lishi Station is detected by using the wavelet analysis. The result indicates that the peak flood at Lishi Station displayed alternation between big floods and small floods on the 25‐ to 26‐year period. At the same timescale, the peak flood of Wujiang River showed an evidence of change between big floods and small floods. It was essential to be prepared and aware of the consequences of climate changes and human influences affecting the water resources in the Wujiang River Basin. This result is expected to draw more attention from the local governments in its decision making and water resource management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

Taking a representative catchment of the Yangtze River Delta region as the study area, this research evaluated sub-daily rainstorm variability and its potential effects on flood processes based on an integrated approach of the HEC-HMS model and design storm hyetographs. The results show that the intensities of rainfall on sub-daily scale are getting more extreme. The annual maximum 1-, 2- and 3-hour rainstorms followed significant upward trends with increases of 0.32, 0.43 and 0.44 mm per year, respectively, while the annual maximum 6-, 12- and 24-h events had non-significant rising trends. The detected significant trends in short-duration rainstorms were then used to redesign storm hyetographs to drive the HEC-HMS model, the results show that these changes in short-duration rainstorm characteristics would increase the flood peak discharge and flood volume. These findings indicate that regional flood control capabilities must be improved to manage the adverse impacts of rainfall variation under changing environments.  相似文献   

5.
In this article,the shrinking of Dongting Lake and its progressively weakening connection with the Yangtze River and their impact on flooding before and after the implementation of the Three Gorges Project are analyzed.In recent decades,human activity combined with natural processes has altered the flow of the middle reach channel of the Yangtze River and interfered with its connection with Dongting Lake.This has resulted in progressively more frequent flooding in the area.This study uses hydrological data to analyze the annual maximum discharge and annual maximum stage development of the middle reach of the Yangtze River and Dongting Lake.In recent decades before the Three Gorges Project became operational in 2003,the annual maximum discharge and the maximum stage recorded in the middle reach of the river downstream of Dongting Lake had increased,a result of the weakening of the flood regulation function of Dongting Lake;the annual maximum stage at Luoshan station(downstream,close to the confluence of the Yangtze River and Dongting Lake) had risen by about 2.0 m during 1955-2005,(1.5 m attributed to annual maximum discharge and 0.5 m to river channel deposition).Observational data recorded after the Three Gorges Project was put into operation in 2003,it can be seen that deposition in the Dongting Lake has nearly ceased and the lake's connection with the Yangtze River is stable.It is evident that the flood regulation function of Dongting Lake will continue,and that during the lifetime of the Three Gorges Project,the flood situation in the middle reach of the Yangtze River and Dongting Lake will remain stable.  相似文献   

6.
As an alternative to the commonly used univariate flood frequency analysis, copula frequency analysis can be used. In this study, 58 flood events at the Litija gauging station on the Sava River in Slovenia were analysed, selected based on annual maximum discharge values. Corresponding hydrograph volumes and durations were considered. Different bivariate copulas from three families were applied and compared using different statistical, graphical and upper tail dependence tests. The parameters of the copulas were estimated using the method of moments with the inversion of Kendall's tau. The Gumbel–Hougaard copula was selected as the most appropriate for the pair of peak discharge and hydrograph volume (Q‐V). The same copula was also selected for the pair hydrograph volume and duration (V‐D), and the Student‐t copula was selected for the pair of peak discharge and hydrograph duration (Q‐D). The differences among most of the applied copulas were not significant. Different primary, secondary and conditional return periods were calculated and compared, and some relationships among them were obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
E. Morin  H. Yakir 《水文科学杂志》2014,59(7):1353-1362
Abstract

t Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the rest of the rain cells, the flash flood peak discharge can reach 260 m3/s.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Morin, E. and Yakir, H., 2013. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal, 59 (7), 1275–1284. http://dx.doi.org/10.1080/02626667.2013.841315  相似文献   

8.
孙延伟  许有鹏  高斌  王强  李升峰 《湖泊科学》2021,33(5):1574-1583
长江下游秦淮河流域近年来由于城市化崛起导致不透水面迅速扩张,改变了流域水文过程,导致暴雨洪水灾害风险增大.本文以南京秦淮河流域为例,基于1988—2015年间下垫面和水文气象资料建立了流域水文模型,通过不透水面扩张情景分析,探讨了 1988—2015年间不透水面空间扩张及对流域洪水过程的影响.研究结果表明:(1)秦淮河全流域1988—2015年不透水率从3.92%增长到19.11%,且不同区域扩张速度有所差异;(2)2006—2015年不透水面情景下的洪峰流量平均涨幅大于城市化初期;受流域上下游位置和下垫面地形条件的影响,流域溧水河和句容河两河源处的不透水面变化对洪峰的影响较流域下游出口处更显著;(3)秦淮河流域及不同位置的不透水面扩张情景下,小洪水的洪峰响应均大于大洪水,且不透水面扩张发生在下游主干河流域时的大、小洪水洪峰涨幅差距略大于河源流域.  相似文献   

9.
气候变化和人类活动导致珠江流域水文变化,变化前后洪水频率分布显著不同.运用滑动秩和(Mann-Whitney U test)结合Brown-Forsythe、滑动T、有序聚类和Mann-Kendall检验法,并用累积距平曲线法获取年最大流量序列详细信息,综合确定样本最佳变化节点,并对水文变化成因做了系统分析.在此基础上,对整体序列、变化前后序列用线性矩法推求广义极值分布参数以及不同重现期设计流量.结果表明:(1)西江大部以及北江流域最佳变化节点在1991年左右;东江流域最佳变化节点与该流域内3大控制性水库建成时间基本吻合;(2)变化后,西江、北江年最大流量持续增加,洪峰强度增大,尤其是西江干流年最大流量显著增加;东江流域年最大流量显著减小,洪峰强度降低;(3)变化后,西江与北江洪水风险增加,尤其是下游珠三角地区本身受人类活动显著影响,加之西江与北江持续增加的洪水强度,珠三角地区发生洪水的强度及频次加剧,而东江洪水风险减小.此研究对于珠江流域在变化环境下的洪水风险评估与防洪抗灾具有重要意义.  相似文献   

10.
In-depth studies of water and sediment fluxes from rivers into the sea are very important for understanding the interactions between land and sea. This paper is concerned with identifying the changes in the time series of water and sediment fluxes from Feiyun River in Zhejiang Province, China. Inter- and intraannual variability in the water discharge and sediment load of the Feiyun River into the sea are analyzed using the observed data of runoff (1956–2008) and sediment (1957–2008) at Xuekou Station, which is in the main channel. The results show that there is a good peak–valley correlation between the water discharge and sediment load, and there are obvious seasonal variations, with a 65.7% water discharge and 89.2% sediment load during the flooding periods. Water discharge is mainly controlled by natural rainfall, but the construction of the upstream reservoirs in 1997 increased the discharge amount in the dry season and decreased the amount in the flooding season. Sediment loads were reduced after a huge flood in 1990 and construction of upstream reservoirs, while the latter also decreased the sediment load during the typhoon flooding period. Furthermore, the correlation between water discharge and sediment load is also affected by the flood and reservoir construction. There are some differences in the regression equations of sediment load and water discharge for 1957–1989, 1991–1996, and 1997–2008.  相似文献   

11.
During the last few years, the north‐western part of Romania has been affected by catastrophic floods with most of the watercourses reaching their highest recorded discharges. This study reports the generation of a numerical terrain model and the simulation of a backwater phenomenon at elevation steps according to the volume of water accumulated at the confluence of the Buhai Brook with the Jijia River. The hydrological data are complemented by rainfall data and the careful recording of the flood behaviour during the entire period of its development. The main aim of the study is to identify the causes of the backwater phenomenon and to highlight the material damage inflicted on the town of Dorohoi. At the same time, the study uses cartographic model that was developed to establish which areas are at risk of flooding at various levels of probability. The catastrophic flood began on the Buhai Brook, a slow‐flowing stream that drains the areas to the west of the town of Dorohoi and discharged into the upstream sector of the Jijia confluence. The flood caused two types of backwater waves: one behind the bridges and the houses built on the floodplain and a second that followed the course of the main stem (Jijia) upstream from the confluence, flooding the Ezer Lake, which was created specifically to attenuate such floods. The spillway backwater phenomenon was inter‐basin as it did not occur in a single hydrographic basin. The causes of the catastrophic flash flood and of the inter‐basin backwater overflow are natural but also reflect anthropogenic influence. After the lake filled, the discharge into the Jijia was controlled and the flooding downstream was thus greatly diminished. Though fortuitous, the backwater flooding was important in mitigating the impact of the flood wave from the Jijia River. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A flood emergency storage area (polder) is used to reduce the flood peak in the main river and hence, protect downstream areas from being inundated. In this study, the effectiveness of a proposed flood emergency storage area at the middle Elbe River, Germany in reducing the flood peaks is investigated using hydrodynamic modelling. The flow to the polders is controlled by adjustable gates. The extreme flood event of August 2002 is used for the study. A fully hydrodynamic 1D model and a coupled 1D–2D model are applied to simulate the flooding and emptying processes in the polders and flow in the Elbe River. The results obtained from the 1D and 1D–2D models are compared with respect to the peak water level reductions in the Elbe River and flow processes in the polders during their filling and emptying. The computational time, storage space requirements and modelling effort for the two models are also compared. It is concluded that a 1D model may be used to study the water level and discharge reductions in the main river while a 1D-2D model may be used when the study of flow dynamics in the polder is of particular interest. Further, a detailed sensitivity analysis of the 1D and 1D–2D models is carried out with respect to Manning's n values, DEMs of different resolutions, number of cross-sections used and the gate opening time as well as gate opening/closing duration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
基于长江中下游一、二维耦合水动力学模型,以1954和1998年洪水为典型,模拟了三峡水库调蓄前后洞庭湖区的洪水过程,定量分析了三峡水库对洞庭湖区防洪的贡献.结果表明:在长江发生1954和1998年全流域大洪水期间,三峡水库实施兼顾对城陵矶河段的防洪补偿调度,可有效缓解荆南三口河系及湖区的防洪压力,减少荆南三口 1.58...  相似文献   

14.
This paper compares hydrologic records and geomorphic effects of several historic floods in the central Appalachian region of the eastern United States. The most recent of these, occurring in November 1985, was the largest ever recorded in West Virginia, with peak discharges exceeding the estimated 500-year discharge at eight of eleven stations in the South Branch Potomac River and Cheat River basins. Geomorphic effects on valley floors included some of the most severe and widespread floodplain erosion ever documented and exceeded anything seen in previous floods, even though comparable or greater rainfall and unit discharge have been observed several times in the region over the past 50 years. Comparison of discharge-drainage area plots suggests that the intensity and spatial scale of the November 1985 flood were optimal for erosion of valley floors along the three forks of the South Branch Potomac River. However, when a larger geographic area is considered, rainfall totals and discharge-drainage area relationships are insufficient predictors of geomorphic effectiveness for valley floors at drainage areas of 250 to 2500 km2. Unit stream power was calculated for the largest recorded flood discharge at 46 stations in the central Appalachians. Maximum values of unit stream power are developed in bedrock canyons, where the boundaries are resistant to erosion and the flow cross-section cannot adjust its width to accommodate extreme discharges. The largest value was 2570 W m?2; record discharge at most stations was associated with unit stream power values less than 300 W m?2, but more stations exceeded this value in the November 1985 flood than in the other floods that were analysed. Unit stream power at indirect discharge measurement sites near areas experiencing severe erosion in this and other central Appalachian floods generally exceeded 300 W m?2; reach-average values of 200-500 W m?2 were calculated for valleys where erosion damage was most widespread. Despite these general trends, unit stream power is not a reliable predictor of geomorphic change for individual sites. Improved understanding of flood impacts will require more detailed investigation of interactions between local site characteristics and patterns of flood flow over the valley floor.  相似文献   

15.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

16.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   

17.
洪泽湖历史洪水分析(1736-1992年)   总被引:8,自引:2,他引:6  
姜加虎  袁静秀  黄群 《湖泊科学》1997,9(3):231-237
根据1736-1911年文献记载的洪泽湖年最高水位及1914-1992年湖区水文测站的水位,流量资料,进行了长,短序列的入湖洪峰流量及不同时段洪量的频主分析,进而推求出不同重现期的设计入湖洪量和洪水年份相当的重现期,并分析洪水的灾害特征,结果:1)洪泽湖历史上洪水发生频繁,1786,1851,1906年均发生过特大洪水,高堰志桩分别至16.3,23.4,16.1尺。2)1953年建库后,湖水位上升  相似文献   

18.
In urban areas, the presence of impervious surfaces limits natural drainage and routes water to stormwater infrastructure with finite capacity, making these areas especially prone to flooding. Though large floods are responsible for endangering lives and causing extensive damage, there is growing evidence that more frequent floods with shallow water depths, termed nuisance flooding, can have a high cumulative cost and many direct and indirect damages. To determine whether locations of nuisance flooding may be linked to topography, we took a parsimonious, spatially distributed approach to explore whether high topographic index values co-occur with citizen-reported nuisance flooding. We obtained nuisance flood reports from the municipal data service 311 for several watersheds in New York City and Baltimore, USA. Our analysis tested two topographic indices (TI)—topographic wetness index (TWI) and sink depth—both calculated from high-resolution (~1 m) digital elevation models. Generally, our findings suggest that not all but many locations of reported flooding tend to coincide with deep sinks or large TWI. However, nuisance flooding reports most commonly coincided with deep sinks and high TWI when using a maximum, instead of coincident, TI value extracted around each reported location of flooding, an approach we used due to the uncertainty in location accuracy of flooding reports. Overall, our results show promise for application of topographic indices, typically applied in more natural settings, as indicators of nuisance flooding areas in urbanized environments. Although limitations to this approach exist, the application of TIs and crowd-sourced reporting in tandem could provide a useful starting point for mapping flood-prone areas in many cities with technologically adept community members and ample geospatial data.  相似文献   

19.
Based on field data of river discharge, tide, tidal bore, and riverbed topography, the characteristics of river discharge, the effect of river discharge on riverbed erosion and sedimentation, and the feedback effect of riverbed erosion and sedimentation on the tide and tidal bore in the Qiantang River are analyzed. The results show that the inter-annual and seasonal variation of river discharge in the Qiantang River is noticeable, while the seasonal distribution of river discharge tends to be un...  相似文献   

20.
Raise Beck is a mountain torrent located in the central Lake District fells, northern England (drainage area of 1·27 km2). The torrent shows evidence of several major flood events, the most recent of which was in January 1995. This event caused a major channel avulsion at the fan apex diverting the main flood flow to the south, blocking the A591 trunk road and causing local flooding. The meteorological conditions associated with this event are described using local rainfall records and climatic data. Records show 164 mm of rainfall in the 24 hours preceding the flood. The peak flood discharge is reconstructed using palaeohydrological and rainfall–runoff methods, which provide discharge values of 27–74 m3 s?1, and 4–6 m3 s?1, respectively. The flood transported boulders with b‐axes up to 1400 mm. These results raise some important general questions about flood estimation in steep mountain catchments. The geomorphological impact of the event is evaluated by comparing aerial photographs from before and after the flood, along with direct field observations. Over the historical timescale the impact and occurrence of flooding is investigated using lichenometry, long‐term rainfall data, and documentary records. Two major historical floods events are identified in the middle of the nineteenth century. The deposits of the recent and historical flood events dominate the sedimentological evidence of flooding at Raise Beck, therefore the catchment is sensitive to high magnitude, low frequency events. Following the 1995 flood much of the lower catchment was channelized using rip‐rap bank protection, re‐establishing flow north towards Thirlmere. The likely success of this management strategy in containing future floods is considered, based on an analysis of channel capacities. It is concluded that the channelization scheme is only a short‐term solution, which would fail to contain the discharge of an event equivalent to the January 1995 flood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号