首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
克孜尔水库大坝的地震安全性评估   总被引:1,自引:0,他引:1  
通过对克孜尔水库地震活动和地震地质构造背景,地震危险性,地震动力反应等的分析,评估土坝的抗震性能与安全性,并对大坝及库区周围的地质灾害进行了预测。  相似文献   

2.
地震折射和电阻率法在水库坝址勘察中的应用   总被引:3,自引:2,他引:3       下载免费PDF全文
本文以笔者参与的某水库工程勘察为例,介绍了如何根据地质地球物理特征及浅层地震折射波法和高密度电阻率法的原理,选择合适的工作方法和技术参数.并结合典型探测资料,阐述了浅层地震折射波法和高密度电阻率法用于调查覆盖层厚度、基岩风化分带及断裂构造带的位置和产状等工程地质问题中的有效性.  相似文献   

3.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

4.
Stochastic Environmental Research and Risk Assessment - The annual maximum flood records of the Danjiangkou reservoir displayed significant decreasing trends. The upper stream of the reservoir was...  相似文献   

5.
Rainfall distributions in Iran are spatially and temporally heterogeneous, a fact probably linked to the mostly arid and semi-arid climate of the country. On the other hand, water demand is increasing with increasing population and improving life style. At present, the optimal utilization of water resources and irrigation dams is the primary concern of water resource managers. The Eleviyan dam (with a capacity of 60 hm3) was constructed to meet the irrigation and municipal water needs of the Maraghan region (Northwestern Iran). In this study, the efficiency of the Eleviyan irrigation dam system was investigated in three phases by setting up the optimization model that maximized the water release for irrigation purposes after municipal water need were met. In the first phase, the inflows measured in the 21 years prior to the construction of the reservoir, and in the second, the inflows generated by the Monte Carlo simulation method, and in the third phase, the inflows after the construction of the reservoir were used. The results demonstrate that the capacity determined during the preliminary studies was accurate and the operation carried out in the recent periods of operation life was up to a satisfactory standard.  相似文献   

6.
Since water supply failure is one of the primary impacts of drought, drought risk should be quantified in the context of a lack of available water. To assess the drought risk, water supply system performance indices such as reliability, resiliency, and vulnerability are usually introduced as they correspond to primary drought characteristics, i.e., frequency, duration, and magnitude. In this study, we developed a drought risk index (DRI) through weighted averaging the performance indices derived using bivariate drought frequency analysis. We suggested two types of DRI: observed DRI (DRI_O) and designed DRI (DRI_D). DRI_O was calculated using an observed (or synthesized) time series of water shortages. DRI_D was estimated from the bivariate drought frequency curves, which are the probabilistic magnitudes of water shortages corresponding to a particular duration. The historical maximum drought event that represents the maximum DRI_O has generally been used as the target security level. However, we could establish a practically applicable target security level considering that the future water supply failure risk is represented by DRI_D. We defined regional drought safety criteria in this study by comparing DRI_O and DRI_D. Application of the criteria to the Nakdong river basin in South Korea showed that W1 (Byeongseongcheon) and W4 (Hyeongsangang) had the lowest and highest drought risk, respectively, and the drought safety criteria showed an average range of 5–20 years.  相似文献   

7.
Drought hotspot identification requires continuous drought monitoring and spatial risk assessment. The present study analysed drought events in the agriculture‐dominated mid‐Mahanadi River Basin in Odisha, India, using crop water stress as a drought indicator. This drought index incorporated different factors that affect crop water deficit such as the cropping pattern, soil characteristics, and surface soil moisture. The drought monitoring framework utilized a relevance vector machine model‐based classification that provided the uncertainty associated with drought categorization. Using the proposed framework, drought hotspots are identified in the study region and compared with indices based on precipitation and soil moisture. Further, a bivariate copula is employed to model the agricultural drought characteristics and develop the drought severity–duration–frequency (S–D–F) relationships. The drought hotspot maps and S–D–F curves are developed for different locations in the region. These provided useful information on the site‐specific drought patterns and the characteristics of the devastating droughts of 2002 and 2012, characterized by an average drought duration of 7 months at several locations. The site‐specific risk of short‐ and long‐term agricultural droughts are then investigated using the conditional copula. The results suggest that the conditional return periods and the S–D–F curves are valuable tools to assess the spatial variability of drought risk in the region.  相似文献   

8.
9.
Hydrological risk analysis is essential and provides useful information for dam safety management and decision-making. This study presents the application of bivariate flood frequency analysis to risk analysis of dam overtopping for Geheyan Reservoir in China. The dependence between the flood peak and volume is modelled with the copula function. A Monte Carlo procedure is conducted to generate 100,000 random flood peak-volume pairs, which are subsequently transformed to corresponding design flood hydrographs (DFHs) by amplifying the selected annual maximum flood hydrographs (AMFHs). These synthetic DFHs are routed through the reservoir to obtain the frequency curve of maximum water level and assess the risk of dam overtopping. Sensitive analysis is performed to investigate the influence of different AMFH shapes and correlation coefficients of flood peak and volume on estimated overtopping risks. The results show that synthetic DFH with AMFH shape characterized by a delayed time to peak results in higher risk, and therefore highlight the importance of including a range of possible AMFH shapes in the dam risk analysis. It is also demonstrated that the overtopping risk is increased as the correlation coefficient of flood peak and volume increases and underestimated in the independence case (i.e. traditional univariate approach), while overestimated in the full dependence case. The bivariate statistical approach based on copulas can effectively capture the actual dependence between flood peak and volume, which should be preferred in the dam risk analysis practice.  相似文献   

10.
基于非平稳信号时频分析及其地震时频属性技术应用的有关研究成果,对地震信号时频分析、分频解释与频谱分解及其在地震沉积学与地震储层成像中的应用进行系统总结与阐述.从时频分析的基本原理出发,探讨地震分频解释和频谱分解的实现方法及其在地震沉积学与储层成像中的应用策略与效果.分析指出,发展高精度时频分析理论和算法,一体化统筹谋划地震资料叠前与叠后处理解释,针对不同地质条件探索相应的时频响应规律等,是分频解释技术及其在地震沉积学和地震储层成像研究中有效应用中值得深入研究的问题.  相似文献   

11.
Two seismic modelling approaches, that is, two-dimensional pre-stack elastic finite-difference and one-dimensional convolution methods, are compared in a modelling exercise over the fluid-flow simulation model of a producing deep-water turbidite sandstone reservoir in the West of Shetland Basin. If the appropriate parameterization for one-dimensional convolution is used, the differences in three-dimensional and four-dimensional seismic responses from the two methods are negligible. The key parameters to ensure an accurate seismic response are a representative wavelet, the distribution of common-depth points and their associated angles of incidence. Conventional seismic images generated by the one-dimensional convolutional model suffer from lack of continuity because it only accounts for vertical resolution. After application of a lateral resolution function, the convolutional and finite-difference seismic images are very similar. Although transmission effects, internal multiples and P-to-S conversions are not included in our convolutional modelling, the subtle differences between images from the two methods indicates that such effects are of secondary nature in our study. A quantitative comparison of the (normalized root-mean-square) amplitude attributes and waveform kinematics indicates that the finite-difference approach does not offer any tangible benefit in our target-oriented seismic modelling case study, and the potential errors from one-dimensional convolution modelling are comparatively much smaller than the production-induced time-lapse changes.  相似文献   

12.
Non-linear time domain site response analysis is widely used in evaluating local soil effects on propagated ground motion. This approach has generally provided good estimates of field behavior at longer periods but has shortcomings at relatively shorter periods. Viscous damping is commonly employed in the equation of motion to capture damping at very small strains and employs an approximation of Rayleigh damping using the first natural mode only. This paper introduces a new formulation for the viscous damping using the full Rayleigh damping. The new formulation represents more accurately wave propagation for soil columns greater than 50 m thick and improves non-linear site response analysis at shorter periods. The proposed formulation allows the use of frequency dependent viscous damping. Several examples, including a field case history at Treasure Island, California, demonstrate the significant improvement in computed surface response using the new formulation.  相似文献   

13.
海底油气藏及天然气水合物的时频电磁辨识   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了伪随机多频海洋电磁法观测方案.采用伪随机多频信号作为激励场源,多偏移距同线偶极-偶极同时观测,相关辨识海底地电系统的频率特性和冲激响应,可以在时间域和频率域同时辨识海底高阻薄层.在时间域,瞬变冲激时刻可以直接指示海底地层电导率的变化;在频率域,利用多个频率的电场响应计算的频散率及其道闻变化量,相对相位道间变化量对高阻薄层有很好的反映.从而实现对海底油气及天然气水合物的多参数辨识.  相似文献   

14.
Y. Chebud  A. Melesse 《水文研究》2013,27(10):1475-1483
Lake Tana is the largest fresh water body situated in the north‐western highlands of Ethiopia. In addition to its ecological services, it serves for local transport, electric power generation, fishing, recreational purposes, and source of dry season irrigation water supply. Evidence shows that the lake has dried at least once at about 15,000–17,000 before present owing to a combination of high evaporation and low precipitation events. Past attempts to understand and simulate historical fluctuation of Lake Tana based on simplistic water balance approach of inflow, outflow, and storage have failed to capture well‐known events of drawdown and rise of the lake that have happened in the last 44 years. This study tested different stochastic methods of lake level and volume simulation for supporting Lake Tana operational planning decision support. Three stochastic methods (perturbations approach, Monte Carlo methods, and wavelet analysis) were employed for lake level and volume simulation, and the results were compared with the stage level measurements. Forty‐four years of daily, monthly, and mean annual lake level data have shown a Gaussian variation with goodness of fit at 0.01 significant levels of the Kolmogorov–Smirnov test. The stochastic simulations predicted the lake stage level of the 1972, 1984, and 2002/2003 historical droughts 99% of the time. The information content (frequency) of fluctuation of Lake Tana for various periods was resolved using Wigner's Time‐Frequency Decomposition method. The wavelet analysis agreed with the perturbations and Monte Carlo simulations resolving the time (1970s, 1980s, and 2000s) in which low frequency and high spectral power fluctuation has occurred. The Monte Carlo method has shown its superiority for risk analysis over perturbation and deterministic method whereas wavelet analysis reconstructed historical record of lake stage level at daily and monthly time scales. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
汶川地震远场地震动场地相关性与分析方法评价   总被引:1,自引:0,他引:1       下载免费PDF全文
为考查远场地震动的场地相关性并评价一些场地特性分析方法的适用性,采用不同方法对汶川地震山东省12个远场台站的强震记录进行了分析.选取台站分别位于按建筑抗震设计规范(CBC)场地划分中的Ⅰ—Ⅲ类场地上.地震动记录的分析方法包括傅里叶幅值谱法,地震反应谱法,水平与竖向谱比率法,参考点谱比率法,以及尾波分析等.结果表明,按傅里叶幅值谱法,地震反应谱法,水平与竖向谱比法计算得到的卓越周期均远大于台站场地的卓越周期,不同方法得到的结果之间也有较大差别,且主要反映长周期地震动的卓越频率;参考点谱比率法的结果未反映地震动的卓越周期,也与场地的卓越周期差别较大;对完整记录尾波分析所得的结果比较接近场地的卓越周期.希望本文能为考虑远场地震作用时设计谱的建立,以及场地特性估计时地震动分析方法的选取提供参考依据.  相似文献   

16.
In this contribution, new relationship between the fundamental site frequency and the thickness of soft sediments is obtained for many sites in Egypt. The Horizontal-to-Vertical Spectral Ratio (“H/V”) technique (known as Nakamura technique) can be used as a robust tool to determine the thickness of soft sediments layers overlaying bedrock from observations and measurements of seismic ambient noise data. In Egypt, numerous seismic ambient noise measurements have been conducted in several areas to determine the dynamic properties of soft soil for engineering purposes. At each site in each studied area, the fundamental site frequency was accurately estimated from the main peak in the spectral ratio between the horizontal and vertical component. Consequently, an extensive database of microtremor measurements, well logging data, and shallow seismic refraction data have been configured and assembled for the studied areas. New formula between fundamental site frequency (f0) and thickness of soft sediments (h) is established. The new formula has been validated and compared with other formulas of earlier scientists, and the results indicate that the calculated depth and geometry of the bedrock surface using new formula are in a good agreement with well logs data and previously published seismic refraction surveys in the investigated sites.  相似文献   

17.
Regression‐based regional flood frequency analysis (RFFA) methods are widely adopted in hydrology. This paper compares two regression‐based RFFA methods using a Bayesian generalized least squares (GLS) modelling framework; the two are quantile regression technique (QRT) and parameter regression technique (PRT). In this study, the QRT focuses on the development of prediction equations for a flood quantile in the range of 2 to 100 years average recurrence intervals (ARI), while the PRT develops prediction equations for the first three moments of the log Pearson Type 3 (LP3) distribution, which are the mean, standard deviation and skew of the logarithms of the annual maximum flows; these regional parameters are then used to fit the LP3 distribution to estimate the desired flood quantiles at a given site. It has been shown that using a method similar to stepwise regression and by employing a number of statistics such as the model error variance, average variance of prediction, Bayesian information criterion and Akaike information criterion, the best set of explanatory variables in the GLS regression can be identified. In this study, a range of statistics and diagnostic plots have been adopted to evaluate the regression models. The method has been applied to 53 catchments in Tasmania, Australia. It has been found that catchment area and design rainfall intensity are the most important explanatory variables in predicting flood quantiles using the QRT. For the PRT, a total of four explanatory variables were adopted for predicting the mean, standard deviation and skew. The developed regression models satisfy the underlying model assumptions quite well; of importance, no outlier sites are detected in the plots of the regression diagnostics of the adopted regression equations. Based on ‘one‐at‐a‐time cross validation’ and a number of evaluation statistics, it has been found that for Tasmania the QRT provides more accurate flood quantile estimates for the higher ARIs while the PRT provides relatively better estimates for the smaller ARIs. The RFFA techniques presented here can easily be adapted to other Australian states and countries to derive more accurate regional flood predictions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The InterPACIFIC project was aimed at assessing the reliability, resolution, and variability of geophysical methods in estimating the shear-wave velocity profile for seismic ground response analyses. Three different subsoil conditions, which can be broadly defined as soft-soil, stiff-soil, and hard-rock, were investigated. At each site, several participants performed and interpreted invasive measurements of shear wave velocity (Vs) and compression wave velocity (Vp) in the same boreholes. Additionally, participants in the project analysed a common surface-wave dataset using their preferred strategies for processing and inversion to obtain Vs profiles. The most significant difference between the invasive borehole methods and non-invasive surface wave methods is related to resolution of thin layers and abrupt contrasts, which is inherently better for invasive methods. However, similar variability is observed in the estimated invasive and non-invasive Vs profiles, underscoring the need to account for such uncertainty in site response studies. VS,30 estimates are comparable between invasive and non-invasive methods, confirming that the higher resolution provided by invasive methods is quite irrelevant for computing this parameter.  相似文献   

19.
Abstract

Flood frequency analysis based on a set of systematic data and a set of historical floods is applied to several Mediterranean catchments. After identification and collection of data on historical floods, several hydraulic models were constructed to account for geomorphological changes. Recent and historical rating curves were constructed and applied to reconstruct flood discharge series, together with their uncertainty. This uncertainty stems from two types of error: (a) random errors related to the water-level readings; and (b) systematic errors related to over- or under-estimation of the rating curve. A Bayesian frequency analysis is performed to take both sources of uncertainty into account. It is shown that the uncertainty affecting discharges should be carefully evaluated and taken into account in the flood frequency analysis, as it can increase the quantiles confidence interval. The quantiles are found to be consistent with those obtained with empirical methods, for two out of four of the catchments.

Citation Neppel, L., Renard, B., Lang, M., Ayral, P.-A., Coeur, D., Gaume, E., Jacob, N., Payrastre, O., Pobanz, K. & Vinet, F. (2010) Flood frequency analysis using historical data: accounting for random and systematic errors. Hydrol. Sci. J. 55(2), 192–208.  相似文献   

20.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, these effects are quantified using three methods, namely, multi‐regression, hydrologic sensitivity analysis, and hydrologic model simulation. A conceptual framework is defined to separate the effects. As an example, the change in annual runoff from the semiarid Laohahe basin (18 112 km2) in northern China was investigated. Non‐parametric Mann‐Kendall test, Pettitt test, and precipitation‐runoff double cumulative curve method were adopted to identify the trends and change‐points in the annual runoff from 1964 to 2008 by first dividing the long‐term runoff series into a natural period (1964–1979) and a human‐induced period (1980–2008). Then the three quantifying methods were calibrated and calculated, and they provided consistent estimates of the percentage change in mean annual runoff for the human‐induced period. In 1980–2008, human activities were the main factors that reduced runoff with contributions of 89–93%, while the reduction percentages due to changes in precipitation and potential evapotranspiration only ranged from 7 to 11%. For the various effects at different durations, human activities were the main reasons runoff decreased during the two drier periods of 1980–1989 and 2000–2008. Increased runoff during the wetter period of 1990–1999 is mainly attributed to climate variability. This study quantitatively separates the effects of climate variability and human activities on runoff, which can serve as a reference for regional water resources assessment and management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号