首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock δ18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4‰ (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member.

Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock δ18O can be best explained by isotopic exchange with discharging18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500°C.18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.  相似文献   


2.
The petrography and major and trace element concentrations of the sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, are studied to determine their provenance, intensity of weathering and tectonic setting. The detrital compositions of the Tumengela sandstone samples are dominated by quartz (58.0–70.1 %, average 64.7 %) and lithic fragments (21.8–35.9 %, average 27.3 %), but low in feldspar content (4.9–12.9 %, average 8.0 %). The sandstones can be classified as litharenite and feldspathic litharenite according to their detrital compositions, which is consistent with the geochemical data. The detrital modal compositions reflect that these sandstones are probably derived from a recycled orogenic source. The index of chemical variability (ICV) and SiO2/Al2O3 ratio values suggest that the compositional maturity and recycling were moderate. The weathering indices such as the chemical index of alteration (CIA), plagioclase index of alteration (PIA), chemical index of weathering (CIW), and Al2O3–(CaO* + Na2O)–K2O (A–CN–K) diagram indicate that the intensities of weathering in the source area were moderate. The Al2O3/TiO2, Th/Co, La/Sc, La/Co, Th/Sc, Cr/Th ratio values and the discriminant function of the Tumengela sandstones indicate that the sediments were mainly derived from felsic source rocks, while also mixed with intermediate source rocks. The comparison of rare earth element patterns and its Eu anomalies to the probable source rocks infer that the sandstones were derived from the combination of granite, rhyolite, dacite, and gneisses. The proximal central uplift belt was probably the primary provenance area as evidenced by the petrographical and geochemical features of the Tumengela sandstones. The multidimensional tectonic discrimination diagram based on major elements show a collision setting (80 %) combined with a rift setting (20 %) for the Tumengela sandstones, which is consistent with the general geology of the study areas.  相似文献   

3.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

4.
Edwin  Ortiz  Barry P.  Roser 《Island Arc》2006,15(2):223-238
Abstract Basement rocks in the catchment of the Kando River in southwest Japan can be divided into two main groups. Paleogene to Cretaceous felsic granitoids and volcanic rocks dominate in the upstream section, and more mafic, mostly Miocene volcanic and volcaniclastic rocks occur in the downstream reaches. Geochemically distinctive Mount Sambe adakitic volcanic products also crop out in the west. X‐ray fluorescence analyses of major elements and 14 trace elements were made of two size fractions (<180 and 180–2000 µm) from 86 stream sediments collected within the catchment, to examine contrasts in composition between the fractions as a result of sorting and varying source lithotype. The <180 µm fractions are depleted in SiO2 and enriched in most other major and trace elements relative to the 180–2000 µm fractions. Na2O, K2O, Ba, Rb and Sr are either depleted relative to the 180–2000 µm fractions, or show little contrast in abundance. Sediments from granitoid‐dominated catchments are distinguished by greater K2O, Th, Rb, Ba and Nb than those derived from the Miocene volcanic rocks. Granitoid‐derived <180 µm fractions are also enriched in Zr, Ce and Y. Sediments derived from the Miocene volcanic rocks generally contain greater TiO2, Fe2O3*, Sc, V, MgO and P2O5, reflecting their more mafic source. Sediments containing Sambe volcanic rocks in their source are marked by higher Sr, CaO, Na2O and lower Y, reflecting an adakitic signature that persists into the lower main channel, where compositions become less variable as the bedload is homogenized. Normalization against source averages shows that compositions of the 180–2000 µm fractions are less fractionated from their parents than are the <180 µm fractions, which are enriched for some elements. Contrast between the size fractions is greatest for the granitoid‐derived sediments. Weathering indices of the sediments are relatively low, indicating source weathering is moderate, and typical of temperate climates. Some zircon concentration has occurred in granitoid‐derived <180 µm fractions relative to 180–2000 µm counterparts, but Th/Sc and Zr/Sc ratios overall closely reflect both provenance and homogenization in the lower reaches.  相似文献   

5.
6.
Since the mid-1980s,Tanyaokou large Zn-Cu-Fe sulfides deposit,located at the southwest end of Langshan-Zhaertaishan-Bayan Obo Mesoproterozoic metallogenic belt in the west section of the northern margin of the North China Platform[1?9](Fig.1),has been confirmed to be submarine volcanic exhalative-sedimentary metamorphosed deposit hosted in the miogeosynclinal mud-carbonaceous formation of the Langshan Group(LG)[1],or submarine volcanic exha-lative-deposition-altered deposit[2]or stratabo…  相似文献   

7.
Petrography and geochemistry(major, trace and rare earth elements) of clastic rocks from the Late Palaeozoic Madzaringwe Formation, in the Tshipise-Pafuri Basin, Northern South Africa, have been investigated to understand their provenance. Sandstone petrography and detrital modes indicates that the Late Palaeozoic succession was derived from craton interior and recycled orogen provenance. Sandstones in the Madzaringwe Formation are sub-arkosic to sub-litharenite. The sediments may represent a recycled to craton interior provenance. The geochemical data of major elements show that sandstone and shales have the same source. The study of paleoweathering conditions based on modal composition, chemical index of alteration(CIA) and A-CN-K(Al2O3-Ca O+Na2O-K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and sandstone rocks. The relatively high CIA values(70–90%) indicates moderate to high weathering conditions of the samples and the paleoclimate of the source area was warm. K2O/Na2 O versus Si O2 and Na2O-Ca O-K2 O tectonic setting discrimination plots, suggest a passive continental margin. In the study of trace elements, triangular Th-Sc-Zr/10 and La-Th-Sc plots both suggest a passive margin setting of the basin. Petrographic and geochemical results of the samples suggest uplifted basement source areas dominated by sedimentary rocks and/or granite-gneiss rocks. The source rocks might have been the recycled pre-Soutpansberg Karoo Supergroup rocks and the metasedimentary rocks of the Soutpansberg Group. Other source rocks may have been the pre-Beit-Bridge basement rocks(granites and gneisses).  相似文献   

8.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   

9.
The first and second members of the Nenjiang Formation (K2n1+2) in the Songliao Basin, northeast China, are an interval of dark-colored mudstone. Paleoenvironmental studies of these strata are useful for understanding the terrestrial environment under a greenhouse climate and hydrocarbon accumulation in lake basins. In this study, clay mineralogy of the K2n1+2 from four borehole or outcrop sections is investigated to understand terrestrial paleoenvironment during the depositional period in the Late Cretaceous. In the mudstone samples, smectite and illite are the predominant clay minerals, and were derived from weathering of parent rocks in a temperate, sub-humid to sub-arid climate; kaolinite and chlorite are minor clay species. The difference in the clay-mineral assemblages between the eastern and western margins of the basin was primarily controlled by provenance lithology, and the high smectite content in the western basin resulted from alteration of volcanic rocks exposed in the Greater Xing’an Range area. The increasing illite content and ratio of illite/smectite percentages in the upper part of the first member of the Nenjiang Formation indicate paleoenvironmental change. This temporal change in the clay-mineral composition was primarily caused by a regionally cooler and drier paleoclimate, consistent with previous paleoenvironmental reconstructions.  相似文献   

10.
The Canyon Mountain ophiolite, Oregon, is exceptional in lacking sheeted dikes, basaltic pillow lavas, and sediments that are characteristic of many other ophiolites. Instead, the uppermost portion of the complex consists of a significant volume of plagiogranites, which, in addition to minor basalts, intrude a large section of keratophyres believed to be of volcanic origin. The trend of intrusive rocks and of bedding in the keratophyres is mostly parallel to layering in the underlying gabbroic cumulates and to contacts between units in the remainder of the ophiolite. It is suggested that the plagiogranites, basalts, and keratophyres comprise a sill complex. Both the plagiogranites and the keratophyres are similar, respectively, to low-K2O plutonic and extrusive rocks of island arcs. The mineralogy and penetrative deformation structures of the ultramafic and some of the gabbroic rocks of the ophiolite indicate greater depth of formation, related to magmatism and diapirism above a Benioff zone. Radiometric age dates of plagiogranites confine the minimum age of the complex to the Early Permian. The Canyon Mountain ophiolite may thus be correlative with other fragments of a Lower Permian arc terrane throughout northeastern Oregon which were chaotically mixed during renewed subduction in middle to late Triassic time.  相似文献   

11.
A summary of the available data on the peralkaline rocks of S. Pietro and S. Antioco islands, together with, new chemical analyses and some preliminary K-Ar ages are reported. Peralkaline rocks occur as ignimbrites, lava flows and domes usually deeply affected by hydrothermal alteration. Pantelleritic varieties are found within the dominantly comenditic association, which display K2O contents higher than Na2O ones. K-Ar data indicate that these peralkaline rocks have a middle Miocene age (? 15 m.y.). They occur in close field association with coheval andesitic and subalkaline acid volcanics belonging to the final products of the Tertiary calc-alkaline volcanic cicle of Sardinia.  相似文献   

12.
The Pleistocene volcanic rocks from northern Taiwan include the Tatun volcano group and the Chilung volcano group. Three rock types occur in this area: Tatun volcano group yield high-alumina basalt and andesites, whereas the chilung volcano group mainly consists of dacites. In addition, amphibole-rich nodules have also been found in different cruptive units of the former volcano group. Around seventy sample of various rock types have been conducted for geochemical studies, including analyses of major elements and trace elements such as Co, Cr, Cu, Li, Ni, Zn, Zr, V, Rb and Sr. Results of Al2O3, MnO, TiO2 total alkali content, MgO/ΣFeO and K2O/Na2O ratios and AMF diagram indicate that these Pleistocene volcanic rocks belong to typical calalkaline rock series. Detailed study of the trace elements reveals that these volcanic rocks are closely correlated with rocks of continental margin type with respect to Rb, Cu, Co, Ni, V and Cr contents, and K/Rb and Ni/Co ratios. These rocks are most probably derived from the fractionation of basaltic magma controlled mainly by the crystallization of amphibole and plagioclase with magnetite playing a minor role.  相似文献   

13.
There exists extensive basic-acidic volcanic rock series in the middle section of the Okinawa Trough. Different types of these volcanic rocks have their own average strontium ratios of 0.704 749, 0.705 062, 0.708 771, 0.704 840 and 0.720 301 with average143Nd/144Nd ratios of 0.512 820, 0.512 673, 0.512 413, 0.512 729 and 0.512 034. These ratios of Sr and Nd isotopes all fall on a theoretic hyperbolic curve of mixing between two end-members of MORB and rhyolitic magma. So we infer that these different kinds of volcanic rocks in the middle Okinawa Trough are the erupted product in different stages of formation and evolution of the trough crust. MORB magma, which had suffered assimilation, mixed with the early-formed crust-derived rhyolitic partial melt mass at different ratios; then, these mixed magma erupted and formed volcanic rock types of the trough. This study indicates that the Okinawa Trough is coming into a stage of submarine spreading from the stage of continental rift.  相似文献   

14.

The late-Paleozoic mafic volcanic rocks occurring in the surrounding areas of the Gonghe basin are distributed in the A’nyêmaqên ophiolite zone, Zongwulong tectonic zone and Kuhai-Saishitang volcanic zone. The mafic volcanics in the A’nyêmaqên zone formed an ancient ridge-centered hotspot around the Majixueshan OIB, the Kuhai-Saishitang mafic rocks consist of E-MORB and continental rift basalts and the Zongwulong volcanic rocks are enriched N-MORB. The regionally low Nb/U and Ce/Pb ratios reflect the influence of the OIB material on the mafic magma source. From geochemistry, spatial distribution and tectonic relationship of the mafic rocks, an ancient triple-junction centered at the Majixueshan can be inferred. The existence of the Kuhai-Saishitang aulacogen may have provided a tectonic channel for the Majixueshan OIB materials metasomatizing the magma source for the Zongwulong rocks. The formation of the triple-junction and the rifting of the Zongwulong zone have separated the orogens and massifs in the region.

  相似文献   

15.
Magma type and tectonic setting discrimination using immobile elements   总被引:1,自引:0,他引:1  
Five minor and trace elements have been variously combined to produce a set of binary diagrams in addition to total alkali-SiO2 diagrams, that discriminate between fresh tholeiitic and alkali basalts. These diagrams are TiO2-Zr, TiO2-Y/Nb, P2O5-Zr, TiO2-Zr/P2O5, and Nb/Y-Zr/P2O5. A clear discrimination between alkaline and tholeiitic basalts can be obtained, although no meaningful separation can be made between the broad groups of oceanic and continental basalts, of either magma type, on the diagrams. As these elements (Ti, P, Zr, Y and Nb) are generally considered immobile during alteration processes, it should be possible to distinguish the magma type of ancient basic volcanics that have been subjected to submarine weathering, spilitization and low-grade metamorphism.  相似文献   

16.
In this paper, we use carbon isotopes in the dissolved load of rivers from the Lesser Antilles volcanic arc (Guadeloupe, Martinique and Dominica islands) to constrain the source of the carbon dioxide (CO2) involved in the neutralization reactions during water–rock interactions. The δ13C data span a large range of variations, from –19‰ to –5 · 2‰ for DIC (dissolved inorganic carbon) concentrations ranging from 11 μM to 2000 μM. Coupled with major element concentrations, carbon isotopic ratios are interpreted as reflecting a mixture of magmatic CO2 (enriched in heavy carbon (δ13C ≈ –3 · 5‰) and biogenic CO2 produced in soils (enriched in light carbon (δ13C < –17‰)). Carbon isotopes show that, at the regional scale, 23 to 40% of CO2 consumed by weathering reactions is of magmatic origin and is transferred to the river system through aquifers under various thermal regimes. These numbers remain first‐order estimates as the major uncertainty in using carbon isotopes as a source tracer is that carbon isotopes can be fractionated by a number of processes, including soil and river degassing. Chemical weathering is clearly, at least, partly controlled by the input of magmatic CO2, either under hydrothermal (hot) or surficial (cold) weathering regimes. This study shows that the contribution of magmatic CO2 to chemical weathering is an additional parameter that could explain the high weathering rates of volcanic rocks. The study also shows that a significant part of the carbon degassed from the Earth's interior is not released as CO2 to the atmosphere, but as DIC to the ocean because it interacts with the groundwater system. This study calls for a better understanding of the contributions of deep carbon to the hydrosphere and its influence on the development of the Critical Zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Numerous green polished stone axes have been excavated from the Sannai-Maruyama site, one of Japan's largest archeological sites in the Jomon period (5.9–4.2 cal kyr BP). The axes are composed of weakly metamorphosed fine-grained volcaniclastic rock having a peculiar texture that includes numerous acicular actinolites growing in random directions within a quartz and albite matrix. Cobbles of Aotora stone found along the Nukabira River, Biratori town, southern Hokkaido, are the most likely raw material for these stone axes. Aotora stones have alternate bands of a soft dark-green picritic layer and a hard SiO2-rich pale-green layer. The pale-green layer has a texture similar to the stone axes. Basaltic and picritic volcanic rocks of the Sorachi-Yezo Belt occupy the area along the Shidoni River, a tributary of the Nukabira River. Volcaniclastic rocks similar in texture, mineralogy, and bulk rock compositions to the Aotora stone are exposed in the area. These rocks underwent metamorphism under the actinolite-pumpellyite facies conditions. Their protolith is submarine hyaloclastic rocks that are intercalated with laminated picrite detritus. The stone axes, pale-green layers of Aotora stone, and those of the volcaniclastic rocks of the Shidoni River area all have high SiO2 (~ 55 wt%), Cr (~ 840 μg/g), and Ni (~ 370 μg/g). The rare earth element patterns with abundant light rare earth elements and depleted heavy rare earth elements of stone axes were also consistent with the pale-green layers of the outcrop. These pale-green layers, interleaved with dark-green layers of picritic detritus, were the likely source rock of the stone axes. The high SiO2 content in the pale-green layer caused the crystallization of quartz and albite in the matrix, which resulted in high-quality raw material for making stone axes.  相似文献   

18.
Analyses of rim-to-interior samples of fresh tholeiitic pillow basalts, deuterically altered holocrystalline basalts, and older, weathered tholeiitic basalts from the deep sea indicate that 87Sr/86Sr ratios of the older basalts are raised by low temperature interaction with strontium dissolved in sea water. 87Sr/86Sr correlates positively with H2O in these basalts; however, there is little detectable modification of the strontium isotope composition in rocks with H2O contents less than 1%. The isotope changes appear to be a function of relatively long-term, low-temperature weathering, rather than high-temperature or deuteric alteration. Strontium abundance and isotopic data for these rocks suggest that strontium content is only slightly modified by interaction with sea water, and it is a relatively insensitive indicator of marine alteration. Average Rb-Sr parameters for samples of apparently unaltered basalt are: Rb= 1.11ppm; Sr= 132ppm; 87Sr/86Sr= 0.70247.  相似文献   

19.
Four closely spaced vents along a fissure make up the Fuego and Acatenango volcanic centers in western Guatemala. The Fuego complex is composed of the Fuego and Meseta vents, but historic activity has consisted exclusively of high-Al2O3 basalts from the Fuego vent. The Meseta vent is inactive and deeply exposed. Prehistoric lavas from Fuego and Meseta are generally more silicic than historic Fuego lavas, but all the rocks form a single coherent geochemical variation pattern. Major element chemistry of these rocks is consistent with plagioclase, olivine, augite, and magnetite (POAM) fractionating from high-Al2O3 basalt. Separate batches of magma can be recognized from trace-element data throughout the history of the Fuego complex. This suggests that closed-system, POAM fractionation of distinct magma bodies occurs at Fuego. Trace-element data requires that deep fractionation of olivine, clinopyroxene, and perhaps magnetite from primary olivine tholeiite occurs before arrival of new magma into the shallow (8–16 km) magma chamber at Fuego. Migration of activity from Meseta to Fuego along the fissure is correlated with the change towards more mafic compositions at Fuego. The shift of the vents may have resulted in shorter repose periods and less time for fractionation before eruption. A minimum age of 17,000 years was required to build the Fuego complex.The andesitic rocks from the adjacent, larger composite volcanoes of Acatenango and Agua have higher incompatible element concentrations, different incompatible element ratios, and lower CaO, Na2O, and Al2O3 contents than Fuego's lavas. We believe the magmatic evolution of Acatenango and Agua is much more complex than Fuego.  相似文献   

20.
Kusakabe  M.  Mizutani  Y.  Kometani  M. 《Bulletin of Volcanology》1982,45(3):203-209

Sulphur isotopic compositions of pyrite, anhydrite and native sulphur in volcanic ashes discharged by the 1979 eruption of Ontake volcano, Nagano, Japan were determined. The isotopic data indicate that sulphate in anhydrite and a part of native sulphur were produced by the disproportionation reaction of sulphite formed by dissolution of SO2 in volcanic gases into water which filled a mud reservoir probably located just below the crater zone. Some part of H2S in volcanic gases was fixed as pyrite and some was oxidised to form native sulphur. Hydrothermal alteration of country rocks to form pyrite, anhydrite and clay minerals had proceeded in the mud reservoir before eruption at temperatures ranging from 110° to 185°C which were estimated by oxygen isotopic fractionation between anhydrite and water.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号