首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
露采矿山是江苏的主体矿山,占用并破坏大量的土地资源,资源禁采后,采矿宕口的复垦给土地资源紧缺的江苏带来了增量土地资源的广阔前景,尤其是城市规划区内,土地复垦的环境、社会和经济效益十分显著。在分析全省露采矿山占用与破坏土地资源不同特征的基础上,初步估算全省露采矿山可复垦的土地资源面积及可复垦土地资源类型,并对土地复垦产生的经济、环境和社会效益进行分析评估,为露采矿山环境治理奠定基础。  相似文献   

2.
Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H2O, H2O−CO2 and CO2 inclusions. H2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200°C and 175 to 250°C, respectively. The salinity of aqueous inclusions, based on ice melting, varies between 6.1 and 8 equiv. wt% NaCl. On the other hand, H2O−CO2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325°C, and their salinity, based on clathrate melting, ranges between 0.8 and 3.8 equiv. wt% NaCl. CO2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from 0.52 to 0.66 g/cm3. The partial mixing of H2O−CO2 and salt H2O−NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.  相似文献   

3.
Strongly deformed and locally migmatized gneisses occur at several places in the southern Eastern Desert of Egypt and in Sinai and have variously been interpreted as a basement to Pan-african (900 to 600 Ma) supracrustal and intrusive assemblages. A suite of grabbroic to granitic gneisses was investigated in the Hafafit area, which constitutes an I-type calc-alkaline intrusive assemblage whose chemistry suggests emplacement along an active continental margin and whose granitoid members can be correlated with the so-called Older Granites of Egypt.207Pb/206Pb single zircon evaporation from three samples of the Hafafit gneisses yielded protolith emplacement ages between 677 ± 9 and 700 ± 12 Ma and document granitoid activity over a period of about 23 Ma. A migmatitic granitic gneiss from Wadi Bitan, south-west of Ras Banas, has a zircon age of 704 ± 8 Ma, and its protolith was apparently generated during the same intrusive event as the granitoids at Hafafit. Single zircons from a dioritic gneiss from Wadi Feiran in south-west Sinai suggest emplacement of the protolith at 796 ± 6 Ma and this is comparable with ages for granitoids in north-east Sinai and southern Israel. None of the above gneisses is derived from remelting of older continental crust, but they are interpreted as reflecting subduction-related calc-alkaline magmatism during early Pan-african magmatic arc formation.  相似文献   

4.
Although, the Eastern Desert of Egypt forms about 22% of the surface area of the country, the area is undeveloped due to the limited availability of water. The morphologic units of the Eastern Desert consist of a number of drainage basins covering about 147,820 km2 (66.5% of the total surface area of the Eastern Desert). The basins drain the occasional rainwater, either towards the Nile Valley or to the Red Sea, causing flood hazards. The availability of water from the hydrologic systems of these basins could be improved by constructing runoff controlling systems in these areas (e.g. dykes and partially effective dams), which could save and make use of a considerable amount of water. The groundwater resources in the Eastern Desert can be divided into four main water-bearing units: the fractured crystalline Pre-Cambrian aquifer, the Nubian sandstone aquifer, the fractured limestone and sandstone aquifer and the Quaternary aquifer. The most productive aquifer is the Nubian sandstone while the fractured limestone and sandstone (Miocene) are only productive along the eastern part of the desert. The Quaternary aquifer occurs along the major dry washes (wadis) and is considered of limited potential as it is recharged mainly from the occasional rainfall. Detailed assessment of these aquifers should be carried out locally for further development of the area.
Resumen Aunque el Desierto Oriental de Egipto constituye alrededor del 22% de la superficie del país, esta área no se encuentra desarrollada por causa de la escasez de agua. Las unidades morfológicas del Desierto Oriental consisten de un número de cuencas de drenaje que cubren alrededor de 147,820 km2 (66.5% del área superficial total del Desierto Oriental). Estas cuencas drenan las aguas lluvias ocasionales, bien hacia el Valle del Nilo o hacia el Mar Rojo, causando amenazas de inundación. La disponibilidad de agua a partir de los sistemas hidrológicos de estas cuencas, puede ser mejorada al construir sistemas de control de escorrentía allí (Ej. Diques y presas de efectividad parcial), las cuales podrían almacenar y permitir el uso de una cantidad considerable de agua. Los recursos de agua subterránea en el Desierto Oriental, pueden dividirse en cuatro unidades principales portadoras de agua: El acuífero fracturado cristalino Pre – Cámbrico, el acuífero de la Arenisca de Nubia, el acuífero de arenisca y caliza fracturadas y el acuífero Cuaternario. El acuífero más productivo es la arenisca de Nubia, mientras que la arenisca y caliza fracturadas (Mioceno), son productivas únicamente a lo largo de la parte oriental del desierto. El acuífero Cuaternario se encuentra a lo largo de las corrientes intermitentes mayores (Wadis) y se le considera de potencial limitado por ser recargado principalmente a partir de lluvia ocasional. Una evaluación detallada de estos acuíferos debe llevarse a cabo localmente, para el desarrollo adicional de esta área.

Résumé Bien que le Désert Est occupe 22% de la surface de lEgypte, la région est sousdeveloppée à cause de la ressource en eau limitée. Les unités morphologiques consistent en des bassins drainant qui couvrent une surface de 147,820 km2 ,représentant 66.6% de la surface du Désert Est. Les bassins drainent les plues intermittentes vers la vallée du Nil ou vers la Mer Rouge en provocant des inondations. On peut augmenter la ressource en eau dans cette région en réalisant des systèmes de contrôle de ruissellements (des digues...) qui peuvent sauver et utiliser un volume considérable deau. La ressource en eau souterraine du Désert Est est cantonnée dans quatre grandes structures: l› aquifère fracturé cristallin Précambrien, l› aquifère gréseux Nubien, l› aquifère calcaire et gréseux et l› aquifère quaternaire. Le plus productif est l› aquifère gréseux Nubien tendis que les calcaire et les grèses dage miocène sont productives seulement dans la partie est du désert. L› aquifère quaternaire se trouve au long des oueds sèches et on considéré quil a un potentiel limité, étant rechargé seulement par les plues intermittentes. Pour le futur développement de la région il est nécessaire une évaluation détaillée, à léchelle locale de ces aquifères.
  相似文献   

5.
The volcanic-hosted massive sulphide (VHMS) deposits in the Eastern Desert of Egypt (e.g., Um Saki deposit) are associated with Precambrian coarse acid pyroclastic rocks. The upper contacts of the massive sulphide body are sharp and well-defined; while the keel zone to the mineralization is always associated with pervasive alteration, characterized by the presence of septechlorite and talc, associated with variable amounts of carbonate and tremolite. On the other hand, the economic talc deposits in Egypt are hosted intensively altered volcanic rocks. Besides talc, chlorite, carbonates and tremolite that occur in variable amounts in these deposits, anomalously high concentrations of gold are also present.The present study showed that alterations in the talc deposits of Darhib, El Atshan, Abu Gurdi, Egat, Um Selimat and Nikhira are similar to those occurring in the keel zone underlying the VHMS of Um Samuki and that the chemical modifications due to alteration processes (additions of Mg, Fe, Mn and Ca coupled with depletions in silica, alkalies, alumina and titanium) are comparable, even the host rocks are different, thus reflecting a genetic relationship. It is suggested that, the examined localities of talc deposits are hosted in the intensively altered volcanics in the keel zones of volcanogenic massive sulphide deposits. Recently, detailed geophysical prospecting program, including electric (resistivity, self-potential and induced polarization), electromagnetic and magnetic methods, was carried out at Darhib, Abu Gurdi and Um Selimat talc deposits. The quantitative interpretation of these geophysical measurements revealed the presence of subsurface bodies of sulphides. The present distribution of talc and allied minerals in Darhib, El Atshan, Abu Gurdi, Egat, Um Selimat and Nikhira could be explained by a tectonic process in which the coarse acid pyroclastic rocks with massive sulphides have tilted in such way that the footwall rock alterations (talc and allied minerals) are exposed on the present-day surface at these localities. Structural studies are currently under way in an attempt to explain the deformation regime that led to the present situation of talc deposits.Two distinct spatial and mineralogical associations of gold mineralization could be identified in the volcanogenic massive sulphide deposits and their footwall alterations (the keel zone) in the Eastern Desert of Egypt. These are (1) gold–silver–zinc association, and (2) gold–copper association. In the former, gold grades are very low and silver is anomalous. This association occurs typically in the upper levels of the VHMS deposit where low-temperature sulphides are abundant. Gold was deposited because of the mixing between the ascending hot solutions and the sulphate-rich seawater. The upper levels of Um Samuki sulphide body represent this association. Gold–copper association, on the other hand, typically occurs in the footwall altered rocks (the keel zone) and the lowest parts of the massive sulphide body. Gold grades reach up to 5.54 ppm, but the average is 1 ppm. Silver is very low, usually in the range of 4–10 ppm. Lead usually, but not always, accompanies gold in this association. Deposition of gold probably took place due to decreasing of temperature and/or increasing pH of the ascending hot brines. The keel zones at Darhib, Abu Gurdi, El Atshan, Um Selimat, Nikhira and Egat talc mines better represent this association.  相似文献   

6.
The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and trace elements were analyzed using ICP-MS and treated applying various statistical and mapping techniques. The results showed a significant difference of mean and median Au and most chemical elements in the three portions of the area, and higher values were recorded in the western portion. Furthermore, Au-anomalous sites appeared in upper and lower parts of the Wadi Umm Rilan, along the tributaries of metavolcanic unit and near granitoid contacts. This indicates the main source of Au mineralization is related to emplacement of granitoid plutons and accompanying hydrothermal solutions. There are significant indications for the presence of more than one mineralization event forming a probable single major episode of mineralization in the area, involving Au, Pb and U mineralizations. Geology, geomorphologic aspects and weathering processes could control stream sediment geochemistry, anomalies of Au and associated elements, elemental association and their dispersion patterns. Therefore, the area is fruitful and regarded as a promising target for Au exploration, using Ag, As, Sb, Cd, Cs, and Tl as pathfinder elements.  相似文献   

7.
Ophiolitic peridotites exposed in the Eastern Desert(ED) of Egypt record multiple stages of evolution, including different degrees of partial melting and melt extraction, serpentinization, carbonatization and metamorphism. The present study deals with metaperidotites at two selected localities in the central and southern ED, namely Wadi El-Nabá and Wadi Ghadir, respectively. They represent residual mantle sections of a Neoproterozoic dismembered ophiolite that tectonically emplaced over a volcano-sedimentary succession that represents island–arc assemblages. The studied metaperidotites are serpentinized, with the development of talc-carbonate and quartz-carbonate rocks, especially along shear and fault planes. Fresh relics of primary minerals(olivine, orthopyroxene and Cr-spinel) are preserved in a few samples of partiallyserpentinized peridotite. Most of the Cr-spinel crystals have fresh cores followed by outer zones of ferritchromite and Crmagnetite, which indicates that melt extraction from the mantle protolith took place under oxidizing conditions. The protoliths of the studied metaperidotites were dominated by harzburgites, which is supported by the abundance of mesh and bastite textures in addition to some evidence from mineral and whole-rock chemical compositions. The high Cr#(0.62–0.69; Av. 0.66) and low TiO2(0.3 wt%) contents of the fresh Cr-spinels, the higher Fo(89–92; Av. 91) and NiO(0.24–0.54 wt%, Av. 0.40) contents of the primary olivine relics, together with the high Mg#(0.91–0.93; Av. 91) and low CaO, Al2 O3 and TiO2 of the orthopyroxene relics, are all comparable with depleted to highly depleted forearc harzburgite from a suprasubduction zone setting. The investigated peridotites have suffered subsequent phases of metasomatism, from oceanfloor hydrothermal alteration(serpentinization) to magmatic hydrothermal alteration. The enrichment of the studied samples in light rare earth elements(LREEs) relative to the heavy ones(HREEs) is attributed to most probably be due to the contamination of their mantle source with granitic source hydrothermal fluids after the obduction of the ophiolite assemblage onto the continental crust. The examined rocks represent mantle residue that experienced different degrees of partial melting(~10% to 25% for W. El-Nabá rocks and ~5% to 23% for W. Ghadir rocks). Variable degrees of partial melting among the two investigated areas suggest mantle heterogeneity beneath the Arabian-Nubian Shield(ANS).  相似文献   

8.
Electron microprobe analyses of gold and associated ore minerals as well as stable isotope analyses of sulphide and carbonate minerals were performed in order to determine the metal and fluid sources and temperature of the mineralizing systems to better understand the genesis of the Atud gold deposit hosted in the metagabbro–diorite complex of Gabal Atud (Central Eastern Desert, Egypt). The gold can be classified as electrum (63.6–74.3 wt.% Au and 24.6–26.6 wt.% Ag) and is associated with arsenopyrite and As-bearing pyrite in the main mineralization (gold-sulphides) phase within the main mineralized quartz veins and altered host rocks. Based on the arsenopyrite geothermometer, As-contents (29.3–32.7 atom%) in arsenopyrite point to deposition in the Log ?S2 and T ranges of ?10.5 to ?5.5 and 305–450°C, respectively, during the main mineralizing phase. Based on the δ34S isotopic compositions of the sulphides, they are originated from magmatic fluids in which the sulphur is either sourced directly from magma or remobilized from the magmatic rocks (gabbroic rocks). On the other hand, calcite formed from fluids having mainly magmatic mixed with variable metamorphic signatures based on its δ13C and δ18O values. This work concluded that the gold-bearing ores at Atud deposit have magmatic sources leaching from the country intrusive rocks during water/rock interactions then remobilized during a metamorphic event. Therefore, the Atud gold deposit is classified as an intrusion-related gold deposit, in which the gabbro–diorite host intrusion acted as the source of metals which were mobilized and deposited as a result of the effects of NW–SE shearing.  相似文献   

9.
The Zargat Na'am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by two sets of joints and faults which strike predominantly NNW-SSE and E-W,and is injected by dikes, porphyritic alkaline syenites, and felsite porphyries. It consists of alkali syenites, alkali quartz syenites, and peralkaline arfvedsonite-bearing granitic and pegmatitic dikes and sills.The complex is characterized locally by extreme enrichments in REEs, wolframite and rare, high field strength metals (HFSM), such as Zr and Nb. The highest concentrations ( 1.5 wt% Zr, 0.25 wt% Nb,0.6 wt% ∑REEs) occur in aegirine-albite aplites that formed around arfvedsonite pegmatites. Quartzhosted melt inclusions in arfvedsonite granite and pegmatite provide unequivocal evidence that the peralkaline compositions and rare metal enrichments are primary magmatic features. Glass inclusions in quartz crystals also have high concentrations of incompatible trace elements including Nb (750 × 10-6), Zr (2500 × 10-6) and REEs (1450 × 10-6). The REEs, Nb and Zr compositions of the aegirine-albite aplites plot along the same linear enrichment trends as the melt inclusions, and Y/Ho ratios mostly display unfractionated, near-chondritic values. The chemical and textural features of the aegirine-albite aplites are apparently resultant from rapid crystallization after volatile loss from a residual peralkaline granitic melt similar in composition to the melt inclusions.  相似文献   

10.
Coastal reclamation has been carried out along the coastal areas near Shenzhen, China in a large scale since 1980s by dumping fill materials over the marine mud at the sea bottom. Usually the area to be reclaimed is drained first and some of the mud is air-dried for a few weeks before it is buried by fill. After reclamation, the terrestrial groundwater, which is relatively acidic and with high dissolved oxygen, gradually displaces the seawater, which is alkaline with high salinity. The changes in the burial conditions of mud and the properties of the pore water in the mud may induce the release of some heavy metals into the mud. Field survey confirms that the pH and salinity of the groundwater in the reclamation site are much lower than the seawater. Chemical analyses of mud and groundwater samples collected from the reclamation sites reclaimed in different years indicate that most of the heavy metals in the mud decrease gradually with time, but the heavy metals in the groundwater are increased. The release of heavy metals into pore water due to reactivation of heavy metals in the mud is of environmental concern. To understand why some of the heavy metals can be released from the mud more easily than others, a sequential extraction method was used to study the operationally determined chemical forms of five heavy metals (Cu, Ni, Pb, Zn, and Cd) in the mud samples. Heavy metals can be presented in five chemical forms: exchangeable, carbonate, Fe–Mn oxide, organic, and residual. Ni and Pb were mainly associated with the Fe–Mn oxide fraction and carbonate fraction; Zn was mainly associated with organic fraction and Fe–Mn oxide fraction, while Cu and Cd were associated with organic fraction and carbonate fraction, respectively. If the residual fraction can be considered as an inert phase of the metal that cannot be mobilized, it is the other four forms of heavy metal that cause the noticeable changes in the concentration of heavy metals in the mud. On the basis of the speciation of heavy metals, the mobility of metals have the following order: Pb (36.63%) > Cu (31.11%) > Zn (20.49%) > Ni (18.37%) > Cd (13.46%). The measured metal mobility fits reasonably well with the degree of concentration reduction of the metals with time of burial observed in the reclamation site.  相似文献   

11.
The Campanian-Maastrichtian phosphatic deposits in Egypt,called the Duwi Forma-tion,comprise a part of the extensive Middle East to North African phosphogenic province of Late Cretaceous to Paleogene age.The province holds the greatest accumulation of phosphorites in the geological history,possibly in excess of 70 billion metric tons.The phosphate resources in Egypt alone exceed 3 billion metric tons.Two-third of these three billions occur only in the Abu-Tartur area.Among the phosphorite deposits in Egypt,the phosphorites of the Abu-Tartur area are characterized by high contents of iron ranging from 3% to 7% with an average of 5%.The detailed mineralogical and geochemical studies on the Abu-Tartur phosphorites revealed that iron is found in the form of pyrite,ankerite,clay minerals,microinclusions,and iron oxide.Pyrite,which is the major fraction,occurs as filling cement and partial to complete teplacement of phosphatic grains and confined to the fresh phosphorites while iron oxide occurs as cryp-tocrystalline aggregates of red to brown particles and is confined to the weathered outcrops.Ex-clusive relations between pyrite in the fresh phosphorite samples inside the Abu-Tartur mine and iron oxide in the equivalent horizon of the weathered exposure indicated that iron oxide was formed by the oxidation of pyrite as a result of weathering.All of these forms harm the quality of ore,manufacturing processes,and the produced phosphoric acid and fertilizers.  相似文献   

12.
Integrated sedimentology, mineralogy, geochemistry, and microfossil and macrofossil biostratigraphies of the Maastrichtian–early Paleocene Dakhla Formation of the Western Desert, Egypt, provide improved age resolution, information on the cyclic nature of sediment deposition, and the reconstruction of depositional environments. Age control based on integrated biostratigraphies of planktic foraminifera, calcareous nannofossils and macrofossils yields the following ages for stratigraphic and lithologic sequences. The contact between the Duwi and Dakhla formations marks the Campanian/Maastrichtian boundary (zone CF8a/b boundary) and is dated at about 71 Ma. The age of the Dakhla Formation is estimated to span from 71 Ma at the base to about 63 Ma at the top (zones CF8a–Plc). The Cretaceous/Tertiary (K/T) boundary is within the upper unit of the Kharga Shale Member and marked by a hiatus that spans from 64.5 Ma in the lower Paleocene (base Plc) to at least 65.5 Ma (base CF2, base M. prinsii zones) in the upper Maastrichtian at Gebel Gifata, the type locality of the Dakhla Formation. As a result, the Bir Abu Minqar horizon, deposited between about 64.2 and 64.5 Ma (Plc(l) zone), directly overlies the K/T boundary hiatus. Major hiatuses also span the late Maastrichtian–early Paleocene in sections to the northwest (c. 61.2–65.5 Ma at North El Qasr, c. 61.2–69 Ma at Bir Abu Minqar and c. 61.2–65.5 Ma at Farafra), and reflect increased tectonic activity.During the Maastrichtian–early Paleocene a shallow sea covered the Western Desert of Egypt and the clastic sediment source was derived primarily from tectonic activity of the Gilf El Kebir spur to the southwest of Dakhla and the Bahariya arch. Uplift in the region resulted in major hiatuses in the late Maastrichtian–early Paleocene with increased erosion to the southwest. The area was located near the palaeoequator and experienced warm, wet, tropical to subtropical conditions characterized by low seasonality contrasts and predominantly chemical weathering (high kaolinite and smectite). A change towards perennially more humid conditions with enhanced runoff (increased kaolinite) occurred towards the end of the Maastrichtian and in the early Paleocene with shallow seas fringed by Nypa palm mangroves. Sediment deposition was predominantly cyclic, consisting of alternating sandstone/shale cycles with unfossiliferous shales deposited during sea-level highstands in inner neritic to lagoonal environments characterized by euryhaline, dysaerobic or low oxygen conditions. Fossiliferous calcareous sandstone layers were deposited in well-oxygenated shallow waters during sea-level lowstand periods.  相似文献   

13.
Lithological, chemical, and stable isotope data are used to characterize lacustrine tufas dating back to pre-late Miocene and later unknown times, capping different surfaces of a Tertiary carbonate (Sinn el-Kedab) plateau in Dungul region in the currently hyperarid south-western Egypt. These deposits are composed mostly of calcium carbonate, some magnesium carbonate and clastic particles plus minor amounts of organic matter. They have a wide range of (Mg/Ca)molar ratios, from 0.03 to 0.3. The bulk-tufa carbonate has characteristic isotope compositions: (δ13Cmean = −2.49 ± 0.99‰; δ18Omean = −9.43 ± 1.40‰). The δ13C values are consistent with a small input from C4 vegetation or thinner soils in the recharge area of the tufa-depositing systems. The δ18O values are typical of fresh water carbonates. Covariation between δ13C and δ18O values probably is a reflection of climatic conditions such as aridity. The tufas studied are isotopically similar to the underlying diagenetic marine chalks, marls and limestones (δ13Cmean = −2.06 ± 0.84‰; δ18Omean = −10.06 ± 1.39‰). The similarity has been attributed to common meteoric water signatures. This raises large uncertainties in using tufas (Mg/Ca)molar, δ13C and δ18O records as proxies of paleoclimatic change and suggests that intrinsic compositional differences in material sources within the plateau may mask climatic changes in the records.  相似文献   

14.
以新庄孜矿为例,针对覆土造地过程中,煤矸石充填可能带来的重金属元素的迁移污染作了相关分析。采用煤矸石充填塌陷区,既减少矸石山占地面积,又能在塌陷区覆土造地;同时,填埋矸石有利于保护环境,防止环境污染,具有较大的经济效益、社会效益和环境效益,对淮南矿区覆土造地及工农业持续发展具有重要的示范意义。  相似文献   

15.
A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt   总被引:3,自引:0,他引:3  
Detailed structural geological and related studies were carried out in a number of critical areas in the Proterozoic basement of eastern Egypt to resolve the structural pattern at a regional scale and to assess the general characteristics of tectonic evolution, orogeny and terrane boundaries. Following a brief account of the tectonostratigraphy and timing of the orogenic evolution, the major structural characteristics of the critical areas are presented. Collisional deformation of the terranes ended about 615-600 Ma ago. Subsequent extensional collapse probably occurred within a relatively narrow time span of about 20 Ma (575 – 595 Ma ago) over the Eastern Desert and was followed by a further period of about 50 Ma of late to post-tectonic activity. The regional structures originated mainly during post-collisional events, starting with those related to extensional collapse (molasse basin formation, normal faulting, generation of metamorphic core complexes). Subsequent NNW-SSE shortening is documented by large-scale thrusting (towards the NNW) and folding, distributed over the Eastern Desert, although with variable intensity. Thrusts are overprinted by transpression, which was localized to particular shear zones. Early transpression produced, for example, the Allaqi shear zone and final transpression is documented in the Najd and Wadi Kharit-Wadi Hodein zones. Two terrane boundaries can be defined, the Allaqi and South Hafafit Sutures, which are apparently linked by the high angle sinistral strike-slip Wadi Kharit-Wadi Hodein shear zone with a tectonic transport of about 300 km towards the W/NW. In general, the tectonic evolution shows that extensional collapse is not necessarily the final stage of orogeny, but may be followed by further compressional and transpressional tectonism. The late Pan-African high angle faults were reactivated during Red Sea tectonics both as Riedel shears and normal faults, where they were oriented favourably with respect to the actual stress regime.  相似文献   

16.
The Zargat Na’ am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by two sets of joints and faults which strike predominantly NNW-SSE and E-W, and is injected by dikes, porphyritic alkaline syenites, and felsite porphyries. It consists of alkali syenites, alkali quartz syenites, and peralkaline arfvedsonite-bearing granitic and pegmatitic dikes and sills. The complex is characterized locally by extreme enrichments in REEs, wolframite and rare, high field strength metals (HFSM), such as Zr and Nb. The highest concentrations (1.5 wt% Zr, 0.25 wt% Nb, 0.6 wt% Σ REEs) occur in aegirine-albite aplites that formed around arfvedsonite pegmatites. Quartzhosted melt inclusions in arfvedsonite granite and pegmatite provide unequivocal evidence that the peralkaline compositions and rare metal enrichments are primary magmatic features. Glass inclusions in quartz crystals also have high concentrations of incompatible trace elements including Nb (750 ¢ 10−6), Zr (2500 × 10−6) and REEs (1450 × 10−6). The REEs, Nb and Zr compositions of the aegirine-albite aplites plot along the same linear enrichment trends as the melt inclusions, and Y/Ho ratios mostly display unfractionated, near-chondritic values. The chemical and textural features of the aegirine-albite aplites are apparently resultant from rapid crystallization after volatile loss from a residual peralkaline granitic melt similar in composition to the melt inclusions.  相似文献   

17.
This is an overview of the mode of formation of the Nile Gorge in northern Egypt. It is based on the interpretation of the Shuttle Radar Topography Mission (SRTM) data along with detailed analysis of landsat image, geological map and seismic data. The results show that the current course of the Nile was caused by a differential uplift of two plateaus: Ma'aza, to the east, and Western Desert plateau, to the west of the river. This uplift is caused by dynamic forces resulting from subsurface convection processes. It also contributed to the formation of several drainage systems, basins and structural features. Abundant faults and fractures that are parallel to the Nile Valley on both flanks that are associated with uplift are proven to be contemporaneous with formation of the river. We conclude that understanding of the uplift is crucial to visualizing the Nile course and its geodynamic formation. The information derived from the SRTM data reveals invaluable knowledge in support of the presented remotely sensed geological features. The paper clearly explains the stages of formation of the Nile segments in space and time and structural controls on the path of the Nile River in Egypt. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca–Mg–Na–HCO3–Cl–SO4 type I; facies 2: Na–Cl–HCO3 type II; facies 3: Na–Ca–Mg–Cl type III, facies 4: Ca–Na–Mg–Cl–HCO3 type IV and facies 5: Na–Mg–Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil degradation observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging. On the other hand, water erosion because of sea rise is assessed. Multi-dates satellite data from Landsat TM and ETM+ images dated 1983 and 2003 were used to detect the changes of shoreline during the last two decades. The obtained results showed that, the eroded areas were determined as 568.20 acre; meanwhile the accreted areas were detected as 494.61 acre during the 20-year period.  相似文献   

19.
Iron and phosphorite ores are very common in the geological record of Egypt and exploitable for economic purposes. In some cases these deposits belong together to the same geographic and geologic setting. The most common deposits include phosphorites, glauconites, and iron ores. Phosphorites are widely distributed as a belt in the central and southern part of Egypt. Sedimentary iron ores include oolitic ironstone of Aswan area and karstified iron ore of Bahria Oasis. Glauconites occur in the Western Desert associated with phosphorites and iron ores. As these ores are exploitable and phosphorus in iron ores and iron in phosphorites are considered as gangue elements, the iron–phosphorus relationship is examined in these deposits to clarify their modes of occurrences and genetic relationship based on previously published results.Phosphorus occurs mainly as carbonate fluorapatite (francolite). Iron, on the other hand, occurs in different mineralogical forms such as glauconites, hematite, limonite and goethite.In P-rich rocks (phosphorites) no relationship is observed between iron and phosphorus, which in turn indicates that the FeP model is unlikely to interpret the origin of the late Cretaceous phosphorites and the association of phosphorites and glauconites in Egypt. In Fe-rich rocks (iron ores and glauconites) also no relationship between iron and phosphorus is observed. The present work, therefore, does not support the hypothesis that there is a genetic relationship between phosphorus and iron in sedimentary rocks.  相似文献   

20.
Sinkhole development is unlikely in desert areas with very low precipitation. However, a few cases of land subsidence and sinkhole development took place within the suburbs of Kuwait City. A few sinkholes developed in a sudden and rapid way, leading to great economic losses. In this paper the mechanism and causes of such a land subsidence are described. Decline in groundwater level and downward infiltration of excess irrigation are suggested to be the main factors in the development of the land subsidence in Kuwait. Urbanization and excessive garden irrigation are most probably the triggers of the sudden and rapid land subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号