共查询到20条相似文献,搜索用时 11 毫秒
1.
G. I. Ogilvie 《Monthly notices of the Royal Astronomical Society》2006,365(3):977-990
The non-linear dynamics of a warped accretion disc is investigated in the important case of a thin Keplerian disc with negligible viscosity and self-gravity. A one-dimensional evolutionary equation is formally derived that describes the primary non-linear and dispersive effects on propagating bending waves other than parametric instabilities. It has the form of a derivative non-linear Schrödinger (DNLS) equation with coefficients that are obtained explicitly for a particular model of a disc. The properties of this equation are analysed in some detail and illustrative numerical solutions are presented. The non-linear and dispersive effects both depend on the compressibility of the gas through its adiabatic index Γ. In the physically realistic case Γ < 3, non-linearity does not lead to the steepening of bending waves but instead enhances their linear dispersion. In the opposite case Γ > 3, non-linearity leads to wave steepening and solitary waves are supported. The effects of a small effective viscosity, which may suppress parametric instabilities, are also considered. This analysis may provide a useful point of comparison between theory and numerical simulations of warped accretion discs. 相似文献
2.
Makoto Makita † Kenji Miyawaki Takuya Matsuda 《Monthly notices of the Royal Astronomical Society》2000,316(4):906-916
We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the simplified flux vector splitting (SFS) finite volume method. In our calculations, the gas is assumed to be ideal with γ =1.01, 1.05, 1.1 and 1.2 . The mass ratio of the mass-losing star to the mass-accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller γ is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in a somewhat weaker sense. Mach numbers in our discs are less than 10. These values are lower than the values in observed accretion discs in close binary systems.
Recently, Steeghs, Harlaftis & Horne found the first convincing evidence for spiral structure in the accretion disc of the eclipsing dwarf nova binary IP Pegasi, using the technique known as Doppler tomography. Although the Mach numbers in present calculations are rather low, we may claim that the spiral structure that we discovered in earlier numerical simulations is now found observationally. 相似文献
Recently, Steeghs, Harlaftis & Horne found the first convincing evidence for spiral structure in the accretion disc of the eclipsing dwarf nova binary IP Pegasi, using the technique known as Doppler tomography. Although the Mach numbers in present calculations are rather low, we may claim that the spiral structure that we discovered in earlier numerical simulations is now found observationally. 相似文献
3.
M. R. Bate G. I. Ogilvie S. H. Lubow J. E. Pringle 《Monthly notices of the Royal Astronomical Society》2002,332(3):575-600
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic ( γ =5/3) . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance ℳr ≳0.01 undergo shocks within a distance of order the resonance radius. 相似文献
4.
G. I. Ogilvie 《Monthly notices of the Royal Astronomical Society》2000,317(3):607-622
The non-linear fluid dynamics of a warped accretion disc was investigated in an earlier paper by developing a theory of fully non-linear bending waves in a thin, viscous disc. That analysis is extended here to take proper account of thermal and radiative effects by solving an energy equation that includes viscous dissipation and radiative transport. The problem is reduced to simple one-dimensional evolutionary equations for mass and angular momentum, expressed in physical units and suitable for direct application. This result constitutes a logical generalization of the alpha theory of Shakura & Sunyaev to the case of a time-dependent warped accretion disc. The local thermal–viscous stability of such a disc is also investigated. 相似文献
5.
M. M. Montgomery 《Monthly notices of the Royal Astronomical Society》2009,394(4):1897-1907
Using smoothed particle hydrodynamics, we numerically simulate steady-state accretion discs for cataclysmic variable dwarf novae systems that have a secondary-to-primary mass ratio 0.35 ≤ q ≤ 0.55 . After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by δ= (1, 2, 3, 4, 5 or 20)° to induce negative superhumps. For accretion discs tilted 5° , we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than 3° for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact.
In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional light from innermost disc annuli, and this additional light waxes and wanes with the amount of gas stream overflow received as the secondary orbits. The nodes, where the gas stream transitions from flowing over to under the disc rim (and vice versa), precess in the retrograde direction. 相似文献
In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional light from innermost disc annuli, and this additional light waxes and wanes with the amount of gas stream overflow received as the secondary orbits. The nodes, where the gas stream transitions from flowing over to under the disc rim (and vice versa), precess in the retrograde direction. 相似文献
6.
Stephen B. Foulkes Carole A. Haswell James R. Murray 《Monthly notices of the Royal Astronomical Society》2006,366(4):1399-1409
We present three-dimensional smoothed particle hydrodynamics calculations of warped accretion discs in X-ray binary systems. Geometrically thin, optically thick accretion discs are illuminated by a central radiation source. This illumination exerts a non-axisymmetric radiation pressure on the surface of the disc, resulting in a torque that acts on the disc to induce a twist or warp. Initially planar discs are unstable to warping driven by the radiation torque and, in general, the warps also precess in a retrograde direction relative to the orbital flow. We simulate a number of X-ray binary systems which have different mass ratios, using a number of different luminosities for each. Radiation-driven warping occurs for all systems simulated. For mass ratios q ∼ 0.1 a moderate warp occurs in the inner disc while the outer disc remains in the orbital plane (cf. X 1916−053). For less extreme mass ratios, the entire disc tilts out of the orbital plane (cf. Her X–1). For discs that are tilted out of the orbital plane in which the outer edge material of the disc is precessing in a prograde direction, we obtain both positive and negative superhumps simultaneously in the dissipation light curve (cf. V603 Aql). 相似文献
7.
8.
Sébastien Fromang Caroline Terquem Richard P. Nelson 《Monthly notices of the Royal Astronomical Society》2005,363(3):943-953
Using 2D magnetohydrodynamic (MHD) numerical simulations performed with two different finite-difference Eulerian codes, we analyse the effect that a toroidal magnetic field has on low-mass planet migration in non-turbulent protoplanetary discs. The presence of the magnetic field modifies the waves that can propagate in the disc. In agreement with a recent linear analysis, we find that two magnetic resonances develop on both sides of the planet orbit, which contribute to a significant global torque. In order to measure the torque exerted by the disc on the planet, we perform simulations in which the latter is either fixed on a circular orbit or allowed to migrate. For a planet, when the ratio β between the square of the sound speed and that of the Alfven speed at the location of the planet is equal to 2, we find inward migration when the magnetic field B φ is uniform in the disc, reduced migration when B φ decreases as r −1 and outward migration when B φ decreases as r −2 . These results are in agreement with predictions from the linear analysis. Taken as a whole, our results confirm that even a subthermal stable field can stop inward migration of an earth-like planet. 相似文献
9.
Igor V. Igumenshchev Marek A. Abramowicz & Igor D. Novikov 《Monthly notices of the Royal Astronomical Society》1998,298(4):1069-1078
We numerically construct slim, global, vertically integrated models of optically thin, transonic accretion discs around black holes, assuming a regularity condition at the sonic radius and boundary conditions at the outer radius of the disc and near the black hole. In agreement with several previous studies, we find two branches of shock-free solutions, in which the cooling is dominated either by advection or by local radiation. We also confirm that the part of the accretion flow where advection dominates is in some circumstances limited in size: it does not extend beyond a certain outer limiting radius. New results found in our paper concern the location of the limiting radius and the properties of the flow near to it. In particular, we find that beyond the limiting radius the advective-dominated solutions match on to Shapiro, Lightman &38; Eardley (SLE) discs through a smooth transition region. Therefore, the full global solutions are shock-free and unlimited in size. There is no need to postulate an extra physical effect (e.g. evaporation) for triggering the ADAF–SLE transition. It occurs as a result of standard accretion processes described by the classic slim disc equations. 相似文献
10.
G. I.Ogilvie 《Monthly notices of the Royal Astronomical Society》2002,331(4):1053-1064
An important and widely neglected aspect of the interaction between an accretion disc and a massive companion with a coplanar orbit is the vertical component of the tidal force. As shown by Lubow, the response of the disc to vertical forcing is resonant at certain radii, at which a localized torque is exerted, and from which a compressive wave (p mode) may be emitted. Although these vertical resonances are weaker than the corresponding Lindblad resonances, the m =2 inner vertical resonance in a binary star is typically located within the tidal truncation radius of a circumstellar disc.
In this paper I develop a general theory of vertical resonances, allowing for non-linearity of the response, and dissipation by radiative damping and turbulent viscosity. The problem is reduced to a universal, non-linear ordinary differential equation with two real parameters. Solutions of the complex non-linear Airy equation are presented to illustrate the non-linear saturation of the resonance and the effects of dissipation. It is argued that the m =2 inner vertical resonance is unlikely to truncate the disc in cataclysmic variable stars, but contributes to angular momentum transport and produces a potentially observable non-axisymmetric structure. 相似文献
In this paper I develop a general theory of vertical resonances, allowing for non-linearity of the response, and dissipation by radiative damping and turbulent viscosity. The problem is reduced to a universal, non-linear ordinary differential equation with two real parameters. Solutions of the complex non-linear Airy equation are presented to illustrate the non-linear saturation of the resonance and the effects of dissipation. It is argued that the m =2 inner vertical resonance is unlikely to truncate the disc in cataclysmic variable stars, but contributes to angular momentum transport and produces a potentially observable non-axisymmetric structure. 相似文献
11.
Giuseppe Lanzafame D. Molteni & Sandip K. Chakrabarti 《Monthly notices of the Royal Astronomical Society》1998,299(3):799-804
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics. 相似文献
12.
Charles F. Gammie Jeremy Goodman Gordon I. Ogilvie 《Monthly notices of the Royal Astronomical Society》2000,318(4):1005-1016
We consider the stability of warping modes in Keplerian discs. We find them to be parametrically unstable using two lines of attack, one based on three-mode couplings and the other on Floquet theory. We confirm the existence of the instability and investigate its non-linear development in three dimensions, via numerical experiment. The most rapidly growing non-axisymmetric disturbances are the most nearly axisymmetric (low- m ) ones. Finally, we offer a simple, somewhat speculative model for the interaction of the parametric instability with the warp. We apply this model to the masing disc in NGC 4258 and show that, provided the warp is not forced too strongly, parametric instability can fix the amplitude of the warp. 相似文献
13.
J. R. Murray & P. J. Armitage 《Monthly notices of the Royal Astronomical Society》1998,300(2):561-566
We investigate the growth of tidal instabilities in accretion discs in a binary star potential, using three-dimensional numerical simulations. As expected from analytic work, the disc is prone to an eccentric instability provided that it is large enough to extend to the 3:1 resonance. The eccentric disc leads to positive superhumps in the light curve. It has been proposed that negative superhumps might arise from a tilted disc, but we find no evidence that the companion gravitational tilt instability can grow fast enough in a fluid disc to create a measurable inclination. The origin of negative superhumps in the light curves of cataclysmic variables remains a puzzle. 相似文献
14.
Henrik N. Latter Steven A. Balbus 《Monthly notices of the Royal Astronomical Society》2009,399(2):1058-1073
This paper concerns the interaction between non-axisymmetric inertial waves and their corotation resonances in a hydrodynamical disc. Inertial waves are of interest because they can localize in resonant cavities circumscribed by Lindblad radii and, as a consequence, can exhibit discrete oscillation frequencies that may be observed. It is often hypothesized that these trapped eigenmodes are affiliated with the poorly understood quasi-periodic oscillation phenomenon. We demonstrate that a large class of non-axisymmetric three-dimensional (3D) inertial waves cannot manifest as trapped normal modes. This class includes any inertial wave whose resonant cavity contains a corotation singularity. Instead, these 'singular' modes constitute a continuous spectrum and, as an ensemble, are convected with the flow, giving rise to shearing waves. Finally, we present a simple demonstration of how the corotation singularity stabilizes 3D perturbations in a slender torus. 相似文献
15.
16.
17.
Fractal concepts have been introduced in the accretion disc as a new feature. Due to the fractal nature of the flow, its continuity condition undergoes modifications. The conserved stationary fractal flow admits only saddle points and centre-type points in its phase portrait. Completely analytical solutions of the equilibrium point conditions indicate that the fractal properties enable the flow to behave like an effective continuum of lesser density, and facilitate the generation of transonicity. However, strongly fractal flows inhibit multitransonicity from developing. The mass accretion rate exhibits a fractal scaling behaviour, and the entire fractal accretion disc is stable under linearized dynamic perturbations. 相似文献
18.
Discoseismic c modes in accretion discs have been invoked to explain low-frequency variabilities observed in black hole X-ray binaries. These modes are trapped in the innermost region of the disc and have frequencies much lower than the rotation frequency at the disc inner radius. We show that because the trapped waves can tunnel through the evanescent barrier to the corotational wave zone, the c modes are damped due to wave absorption at the corotation resonance. We calculate the corotational damping rates of various c modes using the Wentzel-Kramers-Brillouin (WKB) approximation. The damping rate varies widely depending on the mode frequency, the black hole spin parameter and the disc sound speed, and is generally much less than 10 per cent of the mode frequency. A sufficiently strong excitation mechanism is needed to overcome this corotational damping and make the mode observable. 相似文献
19.
20.
E. I. Vorobyov Shantanu Basu 《Monthly notices of the Royal Astronomical Society》2007,381(3):1009-1017
We present a numerical model for the evolution of a protostellar disc that has formed self-consistently from the collapse of a molecular cloud core. The global evolution of the disc is followed for several million years after its formation. The capture of a wide range of spatial and temporal scales is made possible by use of the thin-disc approximation. We focus on the role of gravitational torques in transporting mass inward and angular momentum outward during different evolutionary phases of a protostellar disc with disc-to-star mass ratio of order 0.1. In the early phase, when the infall of matter from the surrounding envelope is substantial, mass is transported inward by the gravitational torques from spiral arms that are a manifestation of the envelope-induced gravitational instability in the disc. In the late phase, when the gas reservoir of the envelope is depleted, the distinct spiral structure is replaced by ongoing irregular non-axisymmetric density perturbations. The amplitude of these density perturbations decreases with time, though this process is moderated by swing amplification aided by the existence of the disc's sharp outer edge. Our global modelling of the protostellar disc reveals that there is typically a residual non-zero gravitational torque from these density perturbations, i.e. their effects do not exactly cancel out in each region. In particular, the net gravitational torque in the inner disc tends to be negative during first several million years of the evolution, while the outer disc has a net positive gravitational torque. Our global model of a self-consistently formed disc shows that it is also self-regulated in the late phase, so that it is near the Toomre stability limit, with a near-uniform Toomre parameter Q ≈ 1.5–2.0. Since the disc also has near-Keplerian rotation, and comparatively weak temperature variation, it maintains a near-power-law surface density profile proportional to r −3/2 . 相似文献