首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the radial scales, central surface brightnesses, and colors of 400 disks of various types of galaxies. For nine galaxies, the brightness decrease and the central disk brightness were obtained via a two-dimensional decomposition of the U BV RI J H K photometric images into bulge and disk components. We used published disk parameters for 392 of the galaxies. The central surface brightness μ 0,i 0 and linear (disk) scale length h vary smoothly along the Hubble sequence of galaxies within a rather narrow interval. The disks of relatively early-type galaxies display higher central K surface brightnesses, higher central surface densities, higher central mass-to-luminosity ratios M/L(B), smaller sizes (relative to the diameter of the galaxy D 25), redder integrated colors, and redder central colors. The color gradient normalized to the radius of the galaxy and the “blue” central surface brightness of the disk, μ 0,i/0(B), are both independent of the galaxy type. The radial disk scales in different photometric bands differ less in early-type than in late-type galaxies. A correlation between the central disk surface brightness and the total luminosity of the galaxy is observed. We also consider the influence of dust on the photometric parameters of the disks.  相似文献   

2.
Estimates of the masses of supermassive black holes (M bh ) in the nuclei of disk galaxies with known rotation curves are compared with estimates of the rotational velocities V m and the “indicative” masses of the galaxies M i . Although there is a correlation between M bh and V m or M i , it is appreciably weaker than the correlation with the central velocity dispersion. The values of M bh for early-type galaxies (S0-Sab), which have more massive bulges, are, on average, higher than the values for late-type galaxies with the same rotational velocities. We conclude that the black-hole masses are determined primarily by the properties of the bulge and not the rotational velocity or the mass of the galaxy.  相似文献   

3.
We have carried out numerical simulations of the dynamical evolution of galaxy clusters taking into account merging when the relative velocities of the colliding galaxies are low. In particular, we study the evolution of the structure, mass spectrum, and velocity spectrum of a cluster of a thousand galaxies, as well as the growth of the central supermassive cD galaxy. The initial velocity dispersion of the galaxies and the rotation of the cluster were taken into account. The observed logarithmic spectrum dN\(\tfrac{{dM}}{M}\) was adopted as the initial mass spectrum. The dynamical evolution of galaxy clusters, allowing for the possible merging of colliding galaxies, results in the emergence of a central supermassive galaxy, whose mass continuously increases due to mergers. This occurs only if the mass of the central galaxy becomes greater than ~0.1 of the total mass of the cluster. The observation of cD galaxies with relative masses of ~0.01 suggests that they initially formed in the cluster core, merged with nearby galaxies, and accreted intergalactic gas. The model indicates that a logarithmic galaxy mass spectrum is preserved during the cluster evolution, despite the substantial decrease in the number of galaxies in the cluster with time. The model can also reproduce the observed mass distribution with distance from the cluster center, M r r 1.7.  相似文献   

4.
5.
SDO/HMI and SDO/AIA data for the 24th solar-activity cycle are analyzed using a quicker and more accurate method for resolving π ambiguities in the transverse component of the photospheric magnetic field, yielding new results and confirming some earlier results on the magnetic properties of leading and following magnetically connected spots and single spots. The minimum inclination of the field lines to the positive normal to the solar surface α min within umbrae is smaller in leading than in following spots in 78% of the spot pairs considered; the same trend is found for the mean angle 〈α〉 in 83% of the spot pairs. Positive correlations between the α min values and the 〈α〉 values in leading and following spots are also found. On average, in umbrae, the mean values of 〈B〉, the umbra area S, and the angles α min and 〈α〉 decrease with growth in the maximum magnetic field B max in both leading and following spots. The presence of a positive correlation between B max and S is confirmed, and a positive correlation between 〈B〉 and S in leading and following spots has been found. Themagnetic properties of the umbrae of magnetically connected pairs of spots are compared with the contrast of the He II 304 emission above the umbrae, C 304. Spots satisfying certain conditions display a positive correlation between C 304?L and 〈α L 〉 for the leading (L) spots, and between C 304?L /C 304?F and l L /l F , where l L (l F ) are the lengths of the field lines connecting leading (L) or following (F) spots from the corresponding spot umbrae to the apex of the field line.  相似文献   

6.
Observations of eclipses of the radio pulsar B1259-63 by the disk of its Be-star companion SS 2883 provide an excellent opportunity to study the winds of stars of this type. The eclipses lead to variations in the radio flux (due to variations in the free-free absorption), dispersion measure, rotation measure, and linear polarization of the pulsar. We have carried out numerical modeling of the parameters of the Be-star wind and compared the results with observations. The analysis assumes that the Be-star wind has two components: a disk wind in the equatorial plane of the Be star with a power-law fall-off in the electron density n e with distance from the center of the star \(\rho (n_e \sim \rho ^{ - \beta _o } )\), and a spherical wind above the poles. The parameters for a disk model of the wind are estimated. The disk is thin (opening angle 7.5°) and dense (electron density at the stellar surface n0e ~ 1012 cm?3, β0 = 2.55). The spherical wind is weak (n0e ? 109 cm?3, β0 = 2). This is the first comparison of calculated and observed fluxes of the pulsating radio emission.  相似文献   

7.
The equilibrium thickness of the isothermal layers of interstellar gas and volume gas densities ρ gas in the plane of the disk as a function of galactocentric distance R are computed for seven spiral galaxies (including the Milky Way) using an axisymmetrical model. In this model, the thickness of the stellar disk varies with R and remains approximately equal to the minimum thickness of a stable equilibrium disk. We found the disk thickness to increase toward the periphery in at least five of the seven galaxies. The density of the stellar disk decreases with R faster than ρ gas , so that gas dominates at the disk peripheries in terms of density. A comparison of the azimuthally averaged star formation rate SFR and the gas density shows the absence of a universal Schmidt law SFR ~ρ gas n for galaxies. However, the SFRs in various galaxies are better correlated with the volume than the gas surface density. The parameter n in the Schmidt law formally calculated using the least-squares method lies in the interval 0.8–2.4, being, on average, close to 1.5. The values of n calculated separately for the molecular gas display substantial scatter, but are, on average, close to unity. The value of n appears to increase with decreasing ρ gas , so that the fraction of gas that actively participates in star formation decreases with n.  相似文献   

8.
The results of spectroscopic observations of the host galaxies of objects in the RC catalog (the “Big Trio” program) obtained using the new SCORPIO spectrograph of the Special Astrophysical Observatory are presented. The spectroscopic redshifts of the objects are compared with their photometric color redshifts, and the errors in the latter are estimated. Based on BV RI observations obtained on the 6-m telescope of the SAO, the errors for the population of powerful radio galaxies are close to those found previously for radio quiet galaxies (about 10–20%). The detection of Ly α in the B filter in RC 1626+0448 is confirmed. This object is the second spectrally studied FR II radio source from the RC catalog to have a redshift z>2.5. Star formation in its host galaxy began at a redshift z>3.3. This first use of the new SCORPIO spectrograph demonstrates its promise for studies of very distant steep-spectrum radio galaxies brighter than 23m–24m in V.  相似文献   

9.
We analyze the general 2D isosceles three-body problem for various ratios ? of the mass of the central body to the mass of each of the other two bodies. We set the initial conditions using two parameters: the virial coefficient k and the parameter \(\mu = \dot r/\sqrt {\dot r^2 + \dot R^2 }\), where \(\dot r\) is the relative velocity of the two outer bodies and \(\dot R\) is the velocity of the central body relative to the center of mass of the outer bodies. We compare statistical dependences between evolutionary parameters of triple systems with various values of ?, and analyze the k and μ dependences of the number of crossings of the center of mass of the triple system by the central body and the lifetime of the system. We construct the functions Rmax(rmax), where rmax and Rmax are the maximum achievable distances between the outer bodies, and between the central body and the center of mass of the outer bodies in the triple system. The parameter ? proves to be the most important parameter of the problem, and determines the relationship between the measures of the regular and stochastic trajectories. However, there exist “seeds” of stochasticity, even at small ?~10?2. The measure of the stochastic orbits increases with ?; when ?≥10, virtually the entire region of the initial conditions corresponds to stochastic trajectories.  相似文献   

10.
11.
The fundamental premises concerning the existence of a universal basic distribution describing the initial mass functions (IMFs) of various astronomical objects on scales from brown dwarfs to clusters of galaxies are considered. This distribution has the form dNM?2dM, where M is the mass of an object and N the number of objects with a given mass. It is shown that, at least for objects forming as a result of fragmentation (e.g., stars, star clusters), the basis of this distribution may correspond to a white-noise model. The classical problem of the formation of the IMF for stars is discussed in this context, incuding the relationship between the mass function of protostellar clouds and the stellar IMF. The main factors determining the mass functions of galaxies and galaxy clusters are also considered.  相似文献   

12.
We have carried out a search for low-surface-brightness dwarf galaxies in the region of the Leo-I Group (M96) in images of the second Palomar Sky Survey. We found a total of 36 likely dwarf members of the group with typical magnitudes B t ~18m–19m in an area of sky covering 120 square degrees. Half of these galaxies are absent from known catalogs and lists of galaxies. The radial-velocity dispersion calculated for 19 galaxies is 130 km/s. The Leo-I Group has a mean distance from the Sun of 10.4 Mpc, a mean projected radius of 352 kpc, an integrated luminosity of 6.7 × 1010L, a virial mass-to-luminosity ratio of 107 M/L, and a mean crossing time of 2.7 Gyr. The group shows evidence for a radial segregation of the galaxies according to morphological type and luminosity, suggesting that the group is in a state of dynamical relaxation. The subsystem of bright galaxies in the Leo-I Group is smaller in size (250 kpc) and has a lower velocity dispersion (92 km/s), resulting in a lower virial mass-to-luminosity ratio (34 M/L), as is typical of the Local Group and other nearby groups of galaxies.  相似文献   

13.
Observations with the 6-m telescope of the Special Astrophysical Observatory obtained with the MPFS panoramic spectrograph and a slit spectrograph with the SCORPIO focal reducer are used to analyze the emission spectrum of the ionized gas in a star-forming region in the BCD galaxy VII Zw 403. We present images of the galaxy’s central region in Hα, Hβ, [SII], and [OIII], together with maps of the relative [OIII]/Hβ and [SII]/Hα intensities. We have determined the parameters of the gas in bright ionized supershells, and estimated the relative abundances of oxygen, nitrogen, and sulfur; a low relative N/O abundance was detected.  相似文献   

14.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   

15.
Present work provides in-situ structural data at a fine temperature scale from RT to the melting point of nitratine, NaNO3. From the analysis of log e 33 versus log t plots, it is possible to prove that an univocal indication on the R \( \overline{3} \) c (low temperature, LT) → R \( \overline{3} \) m (high temperature, HT) transition mechanism cannot be obtained because of the relevant role played by the arbitrary assumptions required for defining the c 0 dependence from temperature of the HT phase. This is due to the occurrence of excess thermal expansion for the HT phase. A significantly better fit for an Ising-spin structural model over a non-Ising rigid-body one has been obtained for the LT phase. Moreover, the Ising model led to a smooth variation of the oxygen site x fractional coordinate throughout the transition. The structure of the HT polymorph has been successfully refined considering an oxygen site at x, 0, ½, with 50% occupancy. Such model was the only acceptable one from the crystal chemical point of view as the alternative model (oxygen site at x, y, z with 25% occupancy) led to unrealistically aplanar \( {\text{NO}}_{3}^{ - } \) groups.  相似文献   

16.
Absorption of the synchrotron emission of the quasar 3C 345 in the continuum and H(93–95)α and H(78–79)α radio recombination lines is studied. The upper limit for absorption in the H(93–95)α lines is Tal/Tac < 0.7%; absorption in the H(78–79)α lines with antenna temperature Tal = 25 mK, linewidth Δf = 5.3 ± 0.08 MHz, and Tal/Tac ≥ 0.3% has been detected. A correction to the redshift Δz = 0.00135 ± 0.00008 (z = 0.59365) has been determined.  相似文献   

17.
The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ~ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ~ 2 × 105 K.  相似文献   

18.
A mechanism for the separation of chemical elements and isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of ions is discussed. The efficiency of separation due to LID is proportional to the relative difference of the transport frequencies for collisions of ions of heavy elements located in the excited state (collision frequency ν e ) and ground state (collision frequency ν g ) with neutral buffer particles (hydrogen and helium), (ν e ? ν g )/ν g . The known interaction potentials are used to numerically compute the relative difference (ν e H ? ν g H )/νg H for collisions between the ions Be+, Mg+, Ca+, Sr+, Cd+, Ba+, Al+, and C+ and hydrogen atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 7000?20 000 K, values of |ν e H g H |/ν g H ≈ 0.1?0.4 are obtained. With such relative differences in the transport collision frequencies, the LID rate of ions in the atmospheres of coolCP stars (T < 10000 K) can reach ~0.1 cm/s,which exceeds the drift rate due to light pressure by an order of magnitude. This means that, under these conditions, the separation of chemical elements under the action of LID of ions could be an order of magnitude more efficient than separation due to light pressure. Roughly the same manifestations of LID and light pressure are also expected in the atmospheres of hotter stars (20 000 > T > 10 000 K). LID of heavy ions is manifest only weakly in very hot stars (T > 20 000 K).  相似文献   

19.
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium–aluminum-rich inclusions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can constrain the melt’s isotopic compositions. However, equilibrium α is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt–vapor systems based on first-principles molecular dynamics and the high-temperature approximation of the Bigeleisen–Mayer equation. We found that, at 2500 K, δ25Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141?±?0.004 and 0.143?±?0.003‰ more positive than in their respective vapors. The corresponding δ26Mg values were 0.270?±?0.008 and 0.274?±?0.006‰ more positive than in vapors, respectively. The general \(\alpha - T\) equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt–vapor systems were: \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.264 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\) and \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.340 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\), respectively, where m is the mass of light isotope 24Mg and m′ is the mass of the heavier isotope, 25Mg or 26Mg. These results offer a necessary parameter for mechanistic understanding of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.  相似文献   

20.
We study the evolution of the [O/Fe]-[Fe/H] relation and the dependence of the iron abundance on distance from the galactic plane z in a one-zone model for a disk galaxy, starting from the beginning of star formation. We obtain good agreement with the observational data, including, for the first time, agreement for the [Fe/H]-z relation out to heights of 16 kpc. We also study the influence of the presence of dark matter in the galaxies on the star-formation rate. Comparison of the observed luminosity of the Galaxy with the model prediction places constraints on the fractional mass of dark matter, which cannot be much larger than the fractional mass of visible matter, at least within the assumed radius of the Galaxy, ~20 kpc. We studied the evolution of disk galaxies with various masses, which should obey the Tully-Fisher relation, M ? R2. The Tully-Fisher relation can be explained as a combination of a selection effect related to the observed surface brightnesses of galaxies with large radii and the conditions for the formation for elliptical galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号