首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider stars with radial velocities, proper motions, and distance estimates from the RAVE4 catalogue. Based on a sample of more than 145 000 stars at distances r < 0.5 kpc, we have found the following kinematic parameters: \({\left( {U,{\kern 1pt} V,{\kern 1pt} W} \right)_ \odot }\) = (9.12, 20.80, 7.66) ± (0.10, 0.10, 0.08) km s?1, Ω0 = 28.71 ± 0.63 km s?1 kpc?1, and Ω0 = ?4.28 ± 0.11 km s?1 kpc?2. This gives the linear rotation velocity V 0 = 230 ± 12 km s?1 (for the adopted R 0 = 8.0 ± 0.4 kpc) and the Oort constants A = 17.12 ± 0.45 km s?1 kpc?1 and B = ?11.60 ± 0.77 km s?1 kpc?1. The 2D velocity distributions in the UV, UW, and VW planes have been constructed using a local sample, r < 0.25 kpc, consisting of ~47 000 stars. A difference of the UV velocity distribution from the previously known ones constructed from a smaller amount of data has been revealed. It lies in the fact that our distribution has an extremely enhanced branch near the Wolf 630 peak. A previously unknown peak at (U, V) = (?96, ?10) km s?1 and a separate new feature in the Wolf 630 stream, with the coordinates of its center being (U, V) = (30, ?40) km s?1, have been detected.  相似文献   

2.
Based on a new version of the Hipparcos catalogue and an updated Geneva-Copenhagen survey of F and G dwarfs, we analyze the space velocity field of ≈17 000 single stars in the solar neighborhood. The main known clumps, streams, and branches (Pleiades, Hyades, Sirius, Coma Berenices, Hercules, Wolf 630-α Ceti, and Arcturus) have been identified using various approaches. The evolution of the space velocity field for F and G dwarfs has been traced as a function of the stellar age. We have managed to confirm the existence of the recently discovered KFR08 stream. We have found 19 Hipparcos stars, candidates for membership in the KFR08 stream, and obtained an isochrone age estimate for the stream, 13 Gyr. The mean stellar ages of the Wolf 630-α Ceti and Hercules streams are shown to be comparable, 4–6 Gyr. No significant differences in the metallicities of stars belonging to these streams have been found. This is an argument for the hypothesis that these streams owe their origin to a common mechanism.  相似文献   

3.
A fine structure related to the kinematic peculiarities of three components of the Scorpius-Centaurus association (LCC, UCL, and US) has been revealed in the UV-velocity distribution of Gould Belt stars. We have been able to identify the most likely members of these groups by applying the method of analyzing the two-dimensional probability density function of stellar UV velocities that we developed. A kinematic analysis of the identified structural components has shown that, in general, the center-of-mass motion of the LCC, UCL, and US groups follows the motion characteristic of the Gould Belt, notably its expansion. The entire Scorpius-Centaurus complex is shown to possess a proper expansion with an angular velocity parameter of 46 ± 8 km s?1 kpc?1 for the kinematic center with l 0 = ?40° and R 0 = 110 pc found. Based on this velocity, we have estimated the characteristic expansion time of the complex to be 21 ± 4 Myr. The proper rotation velocity of the Scorpius-Centaurus complex is lower in magnitude, is determined less reliably, and depends markedly on the data quality.  相似文献   

4.
We have studied the fine structure of the active H2O supermaser emission region in Orion KL with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets, and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright compact source ≤0.05 AU in size with a brightness temperature T b ?1017 K. The highly collimated bipolar outflow ~30 has a velocity v ej ?10 km s?1, a rotation period of ~0.5 yr, a precession period of ~10 yr, and a precession angle of ~33°. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies the radio emission from the components by about three orders of magnitude at a velocity v=7.65 km s?1.  相似文献   

5.
We use a new expanded and partially modified sample of 1501 thin edge-on spiral galaxies from the RFGC catalog to analyze the non-Hubble bulk motions of galaxies on the basis of a generalized multiparameter Tully-Fisher relation. The results obtained have confirmed and refined our previous conclusions (Parnovsky et al. 2001), in particular, the statistical significance of the quadrupole and octupole components of the galaxy bulk velocity field. The quadrupole component, which is probably produced by tidal forces from overdense regions, leads to a difference in the recession velocities of galaxies on scales of 8000–10000 km s?1 up to 6% of their Hubble velocity. On Local Supercluster scales (3000 km s?1), its contribution increases to about 20%. Including the octupole components in the model causes the dipole component to decrease to the 1σ level. In contrast, in the dipole model, the galaxy bulk velocity relative to the frame of reference of the cosmic microwave background is 310±75 km s?1 toward the apex with l=311° and b=12°. We also consider a sample of 1493 galaxies that was drawn using a more stringent galaxy selection criterion. The difference between the results of our data analysis for this sample and for the sample of 1501 galaxies is primarily attributable to a decrease in the dipole velocity component (290±75 km s?1 toward the apex with l=310° and b=12°) and a decrease in σ by about 2%.  相似文献   

6.
In experiments that were regularly carried out in 1999–2002 with Pushchino radio telescopes (Russian Academy of Sciences), the study of the radial dependence of the scattering of radio emission from compact natural sources was extended to regions of circumsolar plasma farther from the Sun. Based on a large body of data, we show that, apart from the standard transonic acceleration region located at distances of 10–40 R from the Sun, there is a region of repeated acceleration at distances of 34–60 R attributable to the equality between the solar wind velocity and the Alfvénic velocity. The repetition in the trans-Alfvénic region of the characteristic features of the radial stream structure observed in the transonic region (the existence of a precursor, a narrow region of reduced scattering that precedes a wide region of enhanced scattering) suggests that the main characteristic features of the resonant acceleration of solar wind streams are preserved up to distances of the order of 60 R.  相似文献   

7.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

8.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

9.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   

10.
We consider a sample of 412 galaxies with radial velocities V LG < 2500 kms?1 situated in the sky region of RA = 13. m 0–19. m 0, Dec = +10?...+40? between the Local Void and the Supergalactic plane. One hundred and eighty-one of them have individual distance estimates. Peculiar velocities of the galaxies as a function of Supergalactic latitude SGB show signs of Virgocentric infall at SGB < 10? and motion from the Local Void at SGB > 60?. A half of the Hercules–Bootes galaxies belong to 17 groups and 29 pairs, with the richest group around NGC5353. A typical group is characterized by the velocity dispersion of 67 km s?1, the harmonic radius of 182 kpc, the stellar mass of 4.3 × 1010 M and the virialto- stellar mass ratio of 32. The binary galaxies have the mean radial velocity difference of 37 kms?1, the projected separation of 96 kpc, the mean integral stellar mass of 2.6×109M and the mean virial-to-stellar mass ratio of about 8. The total dark-matter-to-stellar mass ratio in the considered sky region amounts to 37 being almost the same as that in the Local Volume.  相似文献   

11.
We investigated the kinematics of the pulsar wind nebula (PWN) in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6-m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100–200 km s?1, we detected weak high-velocity features in the Hα line at least up to velocities of 400–450 km s?1. We analyzed the morphology of the PWN in the Hα, [S II], and [O III] lines using HST archival data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [O III] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60°) inclination of the pulsar’s velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice as high as its tangential velocity, i.e., it reaches ?500 km s?1, and PSR B1951+32 is the first pulsar whose radial velocity about 40 km s?1 has been estimated from PWN observations. The shell-like Hα-structures outside the bow shock front in the east and the west could be associated with both the pulsar’s jets and the pulsar wind breakthrough due to the layered structure of the extended CTB 80 shell.  相似文献   

12.
The results of quasi-simultaneous spectroscopic and photometric observations of a W UMatype eclipsing variable star AM Leo are presented. The observations were carried out with a 1.2-m telescope equipped with a high-resolution echelle spectrometer, and a telescope-reflector (D = 0.45m) of the Kourovka Astronomical Observatory of Ural Federal University. New values of semi-amplitudes of the radial velocity curves of the components, K1 = 109.6kms?1 and K2 = 252.4kms?1 and the systemic radial velocity V0 =-9.3 kms?1 are obtained, comparable to the data published in the literature. The semi-amplitude of the radial velocity curve of a more massive component K1 and the mass ratio of the components q = 0.412 appeared to be slightly smaller than the values obtained by other authors. An assumption wasmade that a possible reason of this is the presence of hot and/or cold spots on the surface of the components, shifting the effective center of brightness of the visible disk of the component with respect to its center of mass position. It was shown that the AM Leo light curve variations on the time scales of one and more days, registered within the photometric part of the study may be described by the choice of appropriate model of the spot structure.  相似文献   

13.
In this paper of the series we analyze three stars listed among stars with discrepant v sin i: HD9531 and HD31592, which also show radial velocity variations inherent to spectroscopic binaries, and HD129174 which is an Mn-type star with a possible magnetic field. In HD9531 we confirm the radial velocity derived fromthe hydrogen lines as well as fromthe Ca II line at 3933 Å as variable. The profile of the calcium line also appears variable, and with the estimated magnetic induction Be = ?630 ± 1340 G, this suggests that the abundance of calcium possibly varies over the surface of the star. We identified the lines of the secondary component in the spectrum of HD31592 revealing thus it is an SB2 binary with B9.5V and A0V components. While the primary star rotates with v sin i = 50 km s?1, the secondary star is faster with v sin i = 170 km s?1. We find that only 60% of the Mn lines identified in the spectrum of HD129174 can be fitted with a unique abundance value, whereas the remaining lines are stronger or fainter. We also identified two Xe II lines at 5339.33 Å and 5419.15 Å and estimated their log g f.  相似文献   

14.
We give arguments for a basically unified formation mechanism of slow (Lynden-Bell) and fast (common) galactic bars. This mechanism is based on an instability that is akin to the well-known instability of radial orbits and is produced by the mutual attraction and alignment of precessing stellar orbits (so far, only the formation of slow bars has been explained in this way). We present a general theory of the low-frequency modes in a disk that consists of orbits precessing at different angular velocities. The problem of determining these modes is reduced to integral equations of moderately complex structure. The characteristic pattern angular velocities Ωp of the low-frequency modes are of the order of the mean orbital precession angular velocity \(\bar \Omega _{pr}\). Bar modes are also among the low-frequency modes; while \(\Omega _p \approx \bar \Omega _{pr}\) for slow bars, Ωp for fast bars can appreciably exceed even the maximum orbital precession angular velocity in the disk Ω pr max (however, it remains of the order of these precession angular velocities). The possibility of such an excess of Ωp over Ω pr max is associated with the effect of “repelling” orbits. The latter tend to move in a direction opposite to the direction in which they are pushed. We analyze the pattern of orbital precession in potentials typical of galactic disks. We note that the maximum radius of an “attracting” circular orbit rc can serve as a reasonable estimate of the bar length lb. Such an estimate is in good agreement with the available results of N-body simulations.  相似文献   

15.
We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′ determined separately from radial velocities and proper motions and by the statistical-parallax method. The former method yields a short distance scale (for R0=7.5 kpc, the assumed distances should be increased by 4%), whereas the latter method yields a long distance scale (for R0=8.5 kpc, the assumed distances should be increased by 16%). We cannot choose between these two methods. Similarly, the distance scale of blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is matched with the distance scale of Cepheids and OSCs by comparing the derivatives Ω′ determined for H II from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid is well described by the Lindblad relation, while σu≈σv for gas. The following rotation-curve parameters were obtained: Ω0=(27.5±1.4) km s?1 kpc?1 and A=(17.1±0.5) km s?1 kpc?1 for the short distance scale (R0=7.5 kpc); and Ω0=(26.6±1.4) km s?1 kpc?1 and A=(15.4±0.5) km s?1 kpc?1 for the long distance scale (R0=8.5 kpc). We propose a new method for determining the angular velocity Ω0 from stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable streaming motions (with a velocity lag of ~7 km s?1 relative to the LSR), whereas a direct computation of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the tangential perturbations.  相似文献   

16.
The well-known shell supernova remnant (SNR) HB3 is part of a feature-rich star-forming region together with the nebulae W3, W4, and W5. We study the HI structure around this SNR using five RATAN-600 drift curves obtained at a wavelength of 21 cm with an angular resolution of 2′ in one coordinate over the radial-velocity range ?183 to +60 km s?1 in a wider region of the sky and with a higher sensitivity than in previous works by other authors. The spatial-kinematic distribution of HI features around the SNR clearly shows two concentric expanding shells of gas that surround the SNR and coincide with it in all three coordinates (α, δ, and V). The outer shell has a radius of 133 pc, a thickness of 24 pc, and an expansion velocity of 48 km s?1. The mass of the gas in it is ≈2.3 × 105M. For the inner shell, these parameters are 78 pc, 36 pc, 24 km s? 1, and 0.9 × 105M, respectively. The inner shell is immediately adjacent to the SNR. Assuming that the outer shell was produced by the stellar wind and the inner shell arose from the shock wave of the SNR proper, we estimated the age of the outer shell, ≈1.7 × 106 yr, and the mechanical luminosity of the stellar wind, 1.5 × 1038 erg s?1. The inner shell has an age of ≈106 yr and corresponds to a total supernova explosion energy of ≈1052 erg.  相似文献   

17.
18.
The evolution of a Population-I star with an initial mass M ZAMS = 60 M has been calculated. At the stage when a red giant turns into an early-type helium star, the vast bulk of the stellar mass is concentrated in a compact core surrounded by an extended envelope that is unstable with respect to radial oscillations. The range of effective temperatures within which the instability arises extends to T eff ? 105 K. For the models corresponding to the Wolf-Rayet evolutionary stage (5 × 104 K ≤ T eff ≤ 1.05 × 105 K), hydrodynamic calculations of self-exciting radial stellar pulsations have been performed. The pulsational instability develops in a time interval comparable to the dynamic timescale. Once the amplitude has ceased to grow, the pulsational motions are nonlinear traveling waves propagating from the core boundary to the stellar surface. The velocity amplitude of the outer layers is 500 km s?1 < ΔU < 103 km s?1, depending on the effective temperature. During the evolution of a helium star, the mean ratio of the maximum expansion velocity of the outer layers to the local escape velocity decreases and lies within the range 0.25 < U max/v esc < 0.6 for the models considered. The nonlinearity of the stellar pulsations is responsible for the increase in the mean radius \(\bar r\) of the Lagrangian layers compared to the equilibrium radius r eq. The effect of the increase in mean radius decreases with rising effective temperature from\(\bar r\)/r ~ 10 at T eff = 7 × 104 K to \(\bar r\)/r ≈ 2 at T eff = 105 K. The radial pulsation periods for the models considered lie within the range 0.1 day ≤ Π ≤ 1.6 day and the amplitude of the bolometric magnitude variations does not exceed 0 . m 2.  相似文献   

19.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

20.
Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km?s?1. These features were located near the previously reported compact acoustic (Donea and Lindsey, Astrophys. J. 630, 1168, 2005) and seismic sources (Zharkova and Zharkov, Astrophys. J. 664, 573, 2007). We examine the origin of these features and their relationship with various aspects of the flares, viz., hard X-ray emission sources and flare kernels observed at different layers: i) photosphere (white-light continuum), ii) chromosphere (Hα 6563 Å), iii) temperature minimum region (UV 1600 Å), and iv) transition region (UV 284 Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号