首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Monitoring of interplanetary scintillations in 2017 is used as a basis for analyzing the dynamics of scintillation levels in periods preceding the arrival at the Earth of eight large-scale disturbances in the solar wind giving rise to strong geomagnetic storms. In six of the eight events, the dynamics of the scintillation level were mainly determined by the motion of corotating disturbances. In two events, coronal-mass ejections excited in the corona near the western limb of the Sun were observed against the background of corotating disturbances. In one of these cases, a magnetic storm was associated with a corotating flux, and in the other with a powerful propagating disturbance. Comparison with similar data obtained in 2016, also during the descending phase in solar activity, testifies to the existence of corotating disturbances with lifetimes of at least 20 solar rotations. These new results support the earlier conclusion that a weakening of scintillations is observed in the evening sector three to four days before the arrival of the compressed part of a disturbance to the Earth, which could be due to an appreciable lowering of the level of small-scale turbulence in the plasma in an extended region ahead of the frontal part of the disturbance. The interplanetary-scintillation monitoring data for 2017 show that, simultaneously with the associated magnetic storm, there is an enhancement of second-time-scale scintillations, which are most clearly manifest when the storm occurs during the evening or night-time hours. For the events considered, the increase in scintillations accompanying the magnetic storm is associated with an enhancement in the level of small-scale fluctuations in regions of the solar wind adjacent to the Earth when the storm is excited by a corotating disturbance, and with the perturbed ionosphere when the storm is excited by a flare-related disturbance.  相似文献   

2.

The angular sizes and compactnesses of 53 scintillating radio sources observed at 111 MHz on the Large Phased Array of the Lebedev Physical Institute are estimated. The parameters of the angular structures of the sources are estimated using a new method based on a joint analysis of the scintillation index and the asymmetry coefficient for the statistical distribution of the intensity fluctuations. The asymmetry coefficient for scintillations of a point source is estimated based on an analysis of observational data for turbulence in the solar wind. Different methods for estimating source angular sizes based on observations of interplanetary scintillations are compared. It is shown that the proposed new method is suitable for sources with angular sizes up to 1″. The accuracy of the estimated angular sizes and compactnesses of the sources is about 40%.

  相似文献   

3.
Results of continuous 111 MHz observations of interplanetary scintillations of the strong radio source 3C 48 at elongations larger than 80? out on the Large Phased Array (LPA) of the Lebedev Physical Institute are reported. The data were taken during a four-year interval, from 2012 to 2015, near the maximum of the 24th solar-activity cycle. The averaged elongation dependence of the scintillation index and similar dependences for individual years during the approach and recession phases suggest the presence of a periodic modulation with a 26-day period, which is masked by day-to-day variations. This periodic modulation can be explained by the existence of a long-lived region of enhanced plasma density adjacent to the solar equator during the solar-activity maximum. It is shown that the scintillation timescale increases in the transition to elongations exceeding 90?.  相似文献   

4.
A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.  相似文献   

5.
The search for compact components of strong ($${{S}_{{{\text{int}}}}} \geqslant 5$$ Jy at 102.5 MHz) discrete radio sources from the Pushchino catalogue was carried out using the method of interplanetary scintillation. A total of 3620 sources were examined, and 812 of them were found to harbor compact (scintillating) components. Estimates of fluctuations of the flux density of these compact components were derived from the scintillation index ($${{m}_{{\max}}}$$) corresponding to an elongation of 25°. The angular size and compactness of 178 sources with compact components were estimated. Scintillation indices of sources corresponding to the compact component ($${{m}_{0}}$$) and flux densities of compact components were determined. It was demonstrated that slow variations of the spatial distribution of interplanetary plasma, which are related to the 11-year cycle of solar activity, may exert a systematic influence on the estimates of angular sizes of sources. Coefficients compensating the deviation from the spherical symmetry of solar wind in the estimates of angular sizes were found using the coefficient of asymmetry of the statistical distribution of intensity fluctuations. The study of correlations between the parameters of sources in the sample revealed that the maximum value of the scintillation index decreases as the integrated flux increases, while the angular size has no marked dependence on the integrated flux.  相似文献   

6.
Ionospheric scintillation observations of VHF radio signals from FLEETSAT satellite (73°E longitude) at Bhopal from January 1990 to December 1990 have been used to study the characteristic variations of scintillation activity. It is found that scintillation occurrence is essentially a night-time phenomenon and day-time scintillations are very rare. Annual average nocturnal variation of percentage occurrence of scintillations shows maximum at around 2100–2200 hours LT. Seasonally, scintillations are most prominent during equinoxes and least during summer. Geomagnetic disturbances tend to decrease the occurrence of scintillations in the pre-midnight period.  相似文献   

7.
Daily observations of scintillating radio sources obtained from July 2011 through June 2012 on the Big Scanning Antenna of the P.N. Lebedev Physical Institute at 111 MHz using a 16 beams system are analyzed. Variations in the observed scintillation indices are compared with data on solar X-ray flares and geomagnetic disturbances. Comparison of the observed scintillation indices on successive days enables the detection of most propagating disturbances associated with coronal events of class M5.0 and higher.  相似文献   

8.
The large-scale stream structure of the solar wind near the Sun and its evolution during the 11-year solar activity cycle are investigated. The study is based on observations of scattering of the radiation from compact natural radio sources at radial distances R≤14R S (R S is the solar radius). Regular observations were conducted in 1981–1998 on the RT-22 and DKR-1000 radio telescopes of the Russian Academy of Sciences at Pushchino, at λ=1.35 cm and 2.7 m, respectively. The radial dependences of the interplanetary scintillations m(R) and the scattering angle 2?(R) are considered together with the structure of large-scale magnetic fields in the solar corona at R=2.5R S. The entire range of variations in the level of scattering and the associated heliolatitude flow structures in the subsonic solar wind forms over the 11-year solar cycle, as a direct result of the large-scale structure of the evolving magnetic fields at the source of the solar-wind streamlines.  相似文献   

9.
Using the Irkutsk Incoherent Scattering Radar, it is demonstrated that the high sensitivity of such radars, which are usually used for studies of the Earth’s ionosphere, also enables their use in a passive mode for observations of astronomical radio sources. Observations of solar flares accompanied by coronal mass ejections and of quasi-stationary radio sources on the Sun have been carried out. In addition, scintillations of several of the brightest discrete radio sources (Cygnus A, Cassiopeia A, and the Crab Nebula) have been studied over several months. These data can also be useful for studies of the ionosphere and interplanetary space.  相似文献   

10.
Temporal spectra of interplanetary scintillations of the strong radio source 3C 48 based on 111 MHz observations on the Large Scanning Antenna of the Lebedev Physical Institute obtained near the solar-activity minimum are analyzed. Measurements of the temporal spectrum of the scintillations are used to estimate the angular size of the source, the velocity of inhomogeneities, and the power-law index for the spatial spectrum of the turbulence in the interplanetary plasma. The mean angular size of the source is θ 0 = 0.326″ ± 0.016″, and the mean index for the three-dimensional turbulence spectrum is n = 3.7 ± 0.2. There is some evidence that n decreases in the transition from the fast, high-speed to the slow, low-latitude solar wind.  相似文献   

11.
Lukmanov  V. R.  Chashei  I. V. 《Astronomy Reports》2022,66(2):174-178
Astronomy Reports - The results of the long-term (2015–2019) series of interplanetary scintillation observations carried out with the LPA LPI radio telescope at the frequency 111 MHz are...  相似文献   

12.
A new method for separating intensity variations of a source’s radio emission having various physical natures is proposed. The method is based on the joint analysis of the structure function of intensity variations and the asymmetry function, which is a generalization of the asymmetry coefficient and which characterizes the asymmetry of the distribution function of intensity fluctuations on various scales for inhomogeneitiesin the diffractive scintillation pattern. Relationships for the asymmetry function in the cases of a logarithmic normal distribution of the intensity fluctuations and a normal distribution of the field fluctuations are derived. Theoretical relationships and observational data on interstellar scintillations of pulsars (refractive, diffractive, and weak scintillations) are compared. The data for PSR B0329+54, B1133+16, B1642-03, and B1933+16 pulsars were used for comparison. Pulsar scintillations match the behavior expected for a normal distribution of field fluctuations (diffractive scintillation) or logarithmic normal distribution of intensity fluctuations (refractive and weak scintillation). Analysis of the asymmetry function is a good test for distinguishing scintillations against the background of variations that have different origins.  相似文献   

13.

An analysis of data from three years of monitoring of interplanetary scintillations in 2015–2017 during a phase of decreasing solar activity is presented. The observations were carried out on the Large Scanning Antenna of the Lebedev Physical Institute at 111 MHz. During the period considered, the spatial distriution of the scintillation level was close to spherically symmetrical, on average, and did not undergo any strong time variations on scales of months or years. The monthly-mean scintillation level is not correlated with theWolf number.

  相似文献   

14.
Chashei  I. V.  Lebedeva  T. O.  Tyul’bashev  S. A.  Subaev  I. A. 《Astronomy Reports》2021,65(11):1150-1169
Astronomy Reports - A joint analysis of the monitoring data of interplanetary scintillations with solar and geophysical data showed that at the descending phase of the 24 solar activity cycle, the...  相似文献   

15.
Results of a search for and study of variability in a complete sample of flat-spectrum radio sources (83 objects) on time scales longer than a day are reported. The data were obtained in six series of daily observations on the RATAN-600 radio telescope made over 77–103 days at six frequencies from 0.97 to 21.7 GHz and at declinations of 10°–12°30′ (J2000). Variability on time scales of 3–30 days with significance levels below 1% was detected for 19 sources. The time scales, modulation indices, and spectra of the variability derived from an analysis of the light curves, structure functions, and autocorrelation functions are presented for these sources. For a number of them, intrinsic variability and extrinsic variability due to scintillations in the turbulent interstellar medium have been separated. The obtained source characteristics are compared with those for sources at declinations 4°–6° (B1950).  相似文献   

16.
Interplanetary-scintillation observations of the radio source B0531+194 (J0534+1927) obtained over a wide range of elongations at 111 MHz using the Big Scanning Antenna of the Lebedev Physical Institute are presented. Near the Sun, the temporal spectra of the scintillations have a two-component form, corresponding to the superposition of refractive and diffractive scintillations that is characteristic of the saturated regime. A method for estimating the angular size of the scintillating component based on measurement of the break frequency in the diffractive part of the scintillation spectrum is presented. The scintillating component as a fraction of the total flux can be determined using the maximum scintillation index. The angular size of the scintillating component in B0531+194 is found to be 0.24″ ± 0.05″, and the ratio of the fluxes in the core and halo to be roughly one-third. The flux density in the compact radio component is 5 Jy. The estimated parameters of the angular structure of the source are compared with observations at other frequencies.  相似文献   

17.
18.
The variability of the radio source associated with the gamma-ray burst of May 8, 1997, detected using the VLA, is analyzed. This variability can be explained as weak scintillations at 4.86 and 8.46 GHz and the refractive component of saturated scintillations at 1.43 GHz. Possible distances for the source are discussed. The scintillation parameters are in best agreement with the observations if the source is at a cosmological distance and has an angular size ~2 microarcseconds (µas) at 4.86 GHz and an expansion speed of the order of 25 µas/year.  相似文献   

19.
Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.  相似文献   

20.
Efimov  A. I.  Lukanina  L. A.  Chashei  I. V.  Bird  M. K.  Pätzold  M. 《Astronomy Reports》2019,63(3):174-181

Results of experiments on polarized radio sounding of the outer solar corona using the Helios spacecraft from 1975 to 1984 are presented. The characteristic parameters of the temporal spectra of fluctuations in the Faraday rotation of the plane of polarization for heliocentric distances from 3.5 to 5.5 solar radii are obtained. The absolute level of these fluctuations and, consequently, the level of fluctuations of the magnetic field, is almost independent of the solar activity. It is well known that the global structure of the solar wind varies with the solar cycle such that there is slow solar wind at low latitudes and fast solar wind at high latitudes during solar minima. In contrast, a slow solar wind dominates at all latitudes during solar maxima. One explanation for the invariance of the fluctuations observed by sounding the circumsolar plasma is that the mean magnetohydrodynamic turbulence of the low-latitude, slow solar wind depends weakly on the phase of the solar cycle.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号