首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of plasma flows in close binary systems whose accretors have strong intrinsic magnetic fields are studied. A close binary system with the parameters of a typical polar is considered. The results of three-dimensional numerical simulations of the matter flow from the donor into the accretor Roche lobe are presented. Special attention is given to the flow structure in the vicinity of the inner Lagrangian point, where the accretion flow is formed. The interaction of the accretion-flow material from the donor’s envelope with the magnetic field of the accretor results in the formation of a hierarchical structure of the magnetosphere, because less dense areas of the accretion flow are stopped by the magnetic field of the white dwarf earlier than more dense regions. Taking into account this kind of magnetosphere structure can affect analysis results and interpretation of the observations.  相似文献   

2.
We analyze properties of the unique nova-like star AE Aquarii identified with a close binary system containing a red dwarf and a very fast rotating magnetized white dwarf. It cannot be assigned to any of the three commonly adopted sub-classes of Cataclysmic Variables: Polars, Intermediate Polars, and Accreting non-magnetized White Dwarfs. Our study has shown that the white dwarf in AE Aqr is in the ejector state and its dipole magnetic moment is ???1.5 × 1034 G cm3. It switched into this state due to intensive mass exchange between the system components during a previous epoch. A high rate of disk accretion onto the white dwarf surface resulted in temporary screening of its magnetic field and spin-up of the white dwarf to its present spin period. Transition of the white dwarf to the ejector state had occurred at a final stage of the spin-up epoch as its magnetic field emerged from the accreted plasma due to diffusion. In the frame of this scenario AE Aqr represents a missing link in the chain of Polars evolution and the white dwarf resembles a recycled pulsar.  相似文献   

3.
Typical changes of the accretion-disk structures in intermediate polars are studied as a function of the inclination of the accretor’s magnetic field. Thre-dimensional numerical modeling was performed for seven differentmagnetic-axis inclinations. The results showthat the system forms a magnetosphere region, and that column accretion occurs. The action of the magnetic field tilts the inner parts of the disk along the magnetic axis of the accretor. The magnetic-field inclination appreciably influences matter transfer in the disk and accretion processes. Generation of toroidal magnetic field, magnetic braking, and alignment of the dipole magnetic field result in oscillations of the accretion rate. A direct relationship between the field inclination and the oscillation amplitude is found, as well as an inverse relationship between the field inclination and the oscillation period.  相似文献   

4.
A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.  相似文献   

5.
We explore the possibility of explaining Anomalous X-ray Pulsars (AXPs) and Soft Gammaray Repeaters (SGRs) in a scenario with fall-back magnetic accretion onto a young isolated neutron star. The X-ray emission of the pulsar in this case originates due to the accretion of matter onto the surface of the neutron star from a magnetic slab surrounding its magnetosphere. The spin-down rate of the neutron star expected in this picture is close to the observed value. We show that such neutron stars are relatively young and are going through the transition from the propeller state to the accretor state. The pulsar’s activity in gamma-rays is connected with its relative youth, and is enabled by energy stored in a non-equilibrium layer located in the crust of the low-mass neutron star. This energy can be released due to the mixing of matter in the neutron star crust with super heavy nuclei approaching its surface and becoming unstable. The fission of nuclei in the low-density region initiates chain reactions leading to a nuclear explosion. Outbursts are probably triggered by instability developing in the region where the matter accreted by the neutron star accumulates in the magnetic polar regions.  相似文献   

6.
We have performed three-dimensional magnetohydrodynamical calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary possesses a strong, complex magnetic field. These calculations were motivated by observations of polars: cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. In this case, an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarfs in some binaries possess complex (non-dipolar) magnetic fields. We performed simulations of ten polars, with the only variable being the azimuthal angle of the secondary with respect to the white dwarf. These calculations are also applicable to asynchronous polars, where the spin period of the white dwarf differs by a few percent from the orbital period. Our results are equivalent to calculating the structure of one asynchronous polar at ten different spin-orbit beat phases. Our models have an aligned dipolar plus quadrupolar magnetic field centered on the whitedwarf primary. We find that, with a sufficiently strong quadrupolar component, an accretion spot arises near the magnetic equator for slightly less than half our simulations, while a polar accretion zone is active for most of the remaining simulations. For two configurations, accretion at a dominant polar region and in an equatorial zone occurs simultaneously. Most polar studies assume that the magnetic field is dipolar, especially for single-pole accretors. We demonstrate that, with the orbital parameters and magnetic-field strengths typical of polars, the accretion flow patterns can vary widely in the case of a complex magnetic field. This may make it difficult formany polars to determine observationally whether the field is pure dipolar or is more complex, but there shoulid be indications for some systems. In particular, a complex magnetic field should be suspected if there is an accretion zone near the white dwarf’s equator (assumed to be in the orbital plane) or if there are two or more accretion regions that cannot be fitted by dipolar magnetic field. Magnetic-field constraints are expected to be substantially stronger for asynchronous polars, with clearer signs of complex field geometry due to changes in the accretion flow structure as a function of azimuthal angle. These indications become clearer in asynchronous polars because each azimuthal angle corresponds to a different spin-orbit beat phase.  相似文献   

7.
A scenario for hard impulsive flares due to magnetic reconnection and particle acceleration in cosmic plasma is proposed. The properties of fast reconnection in an appreciably non-equilibrium nagnetosphere of a compact relativistic object, such as a neutron star, magnetar, or white dwarf, are discussed. Such a magnetosphere could form as the result of the action of a relativistic shock on the strong magnetic field of the star. An analytical solution is presented for the generalized, two-dimensional structure, shape, and boundaries of the magnetosphere, together with the magnitudes of the direct and reverse currents in the reconnecting current layer. The uncompensated magnetic force acting on the reverse current is determined. The characteristic parameters of the non-equilibrium magnetospheres of compact stellar objects are estimated. The excess magnetic energy of the magnetosphere is comparable to the mechanical energy carried by the shock at the time of impact. The possible acceleration of particles to gigantic energies is discussed.  相似文献   

8.
We present the results of our photometry of the recently discovered intermediate polar 1RXS J062518.2+733433. The observations were made using the 70 cm telescope of the Astronomical Observatory of the Ural State University with a multichannel photometer, and were carried out during 13 nights in March–May 2004. Our analysis reveals brightness variations with periods of 19.788 ± 0.003 min, corresponding to the rotational period of the white dwarf, 21.273 ± 0.003 min, corresponding to the orbital sideband, and 283.3 ± 0.5 min, which is the orbital period. The variations with the white dwarf’s rotational period show a stable amplitude and a quasi-sinusoidal pulse shape persistent over a long time. In contrast, the orbital-sideband variations have an unstable amplitude and a significantly nonsinusoidal pulse shape that varies with time. Variations of the amplitude and pulse shape of the orbital-sideband variations can be related to structural changes of the accretion disk surrounding the white dwarf.  相似文献   

9.
A supernova explosion in a close binary system in which one of the components is a compact magnetized object (neutron star or white dwarf) can form a narrow “tail” with length l t ~109 cm, width h t ~108 cm, and magnetic field B t ~106, due to the resulting shock wave flowing around the magnetosphere of the compact object. The energy released by the reconnection of magnetic field lines in this tail can accelerate electrons to relativistic speeds (γ≈104), creating the conditions required for powerful synchrotron radiation at energies from hundreds of keV to several MeV, i.e., for a gamma-ray burst (GRB). The duration of this radiation will depend on the power of the shock that forms during the supernova. If the shock is not sufficiently powerful to tear off the magnetosphere tail from the compact object, the duration of the GRB will not exceed l t /V A ≤1 s, and the conditions necessary for an “afterglow” at softer energies will not arise. If the shock is more powerful, the tail can be torn from the magnetosphere, forming a narrow ejection, which is perceived in its relativistic motion toward the observer(Γ~104) as an afterglow whose duration grows from tens of seconds at gamma-ray energies to tens of days in the optical. This may explain why afterglows are observed only in association with long GRBs (T 90>10 s). Very short GRBs (T 90<0.1 s) may be local, i.e., low-power, phenomena occurring in close pairs containing compact, magnetized objects, in which there is again an interaction between the magnetosphere of the compact object and a shock wave, but the shock is initiated by a flare on the companion, which is a red-dwarf cataclysmic variable, rather than by a supernova.  相似文献   

10.
The close neutron-star binary system comprised of the radio pulsars PSR J0737-3039 A,B is discussed. An analysis of the observational data indicates that the wind from pulsar A, which is more powerful than the wind from pulsar B, strongly distorts the magnetosphere of pulsar B. A shock separating the relativistic wind from pulsar A and the corotating magnetosphere of pulsar B should form inside the light cylinder of pulsar B. A weakly diverging “tail” of magnetic field is also formed, which stores a magnetic energy on the order of 1030 erg. This energy could be liberated over a short time on the order of 0.1 s as a result of reconnection of the magnetic-force lines in this “tail,” leading to an outburst of electromagnetic radiation with energies near 100 keV, with an observed flux at the Earth of 4 × 10?11 erg cm?2 s?2. Such outbursts would occur sporadically, as in the case of magnetic substorms in the Earth’s magnetosphere.  相似文献   

11.
We discuss characteristic features of the magnetic gas-dynamical structure of the flows in a semi-detached binary system obtained from three-dimensional simulations, assuming that the intrinsic magnetic field of the accreting star is dipolar. The turbulent diffusion of the magnetic field is taken into account. The SS Cyg system is considered as an example. Including the magnetic field can alter the basic parameters of the accretion disk, such as the accretion rate and the characteristic density. The magnetic field in the disk is primarily toroidal.  相似文献   

12.
We have developed a three-dimensional numerical model and applied it to simulate plasma flows in semi-detached binary systems whose accretor possesses a strong intrinsic magnetic field. The model is based on the assumption that the plasma dynamics are determined by the slow mean flow, which forms a backdrop for the rapid propagation of MHD waves. The equations describing the slow motion of matter were obtained by averaging over rapidly propagating pulsations. The numerical model includes the diffusion of magnetic field by current dissipation in turbulent vortices, magnetic buoyancy, and wave MHD turbulence. A modified three-dimensional, parallel, numerical code was used to simulate the flow structure in close binary systems with various accretor magnetic fields, from 105 to 108 G. The conditions for the formation of the accretion disk and the criteria distinguishing the two types of flow corresponding to intermediate polars and polars are discussed.  相似文献   

13.
The interaction of flow with an erodible bed in alluvial rivers and deep‐sea channels gives rise to a wide range of self‐formed morphologies, including channels, ripples, dunes, antidunes, alternate bars, multiple‐row bars, meandering and braiding. As the flow is invariably turbulent in field manifestations of these morphologies, there has been a tendency to assume that turbulence is necessary for them to form. While turbulence undoubtedly has an important influence when it is present, it is not necessary for any of these features. Indeed, all of these features can be formed by the morphodynamic interaction of purely laminar or nearly laminar flow with an erodible bed. This paper provides a survey and synthesis of a wide range of laminar or near‐laminar flow analogues of morphologies observed in the field. Laminar‐flow analogues of turbulent‐flow morphologies cannot and should not be expected to satisfy dynamic similarity in terms of all relevant dimensionless parameters. What is of more significance is the convergence of the underlying physics. It is illustrated in this paper that many existing theoretical frameworks for the explanation of turbulent‐flow morphodynamics require only relatively minor modification in order to adapt them to laminar flows.  相似文献   

14.
The effect of the radius of the tube of open magnetic-field lines on the gamma-ray curvature radiation from the polar regions of a radio pulsar with a non-dipolar magnetic field is analyzed. The pulsar is considered in a polar-cap model with free electron emission from the neutron-star surface. The effect of the non-dipolar magnetic field on the radius of curvature of the field lines and the field intensity is taken into account. In connection with the creation of electron-positron pairs, we take into account only the birth of pairs by curvature radiation in the magnetic field. The small non-dipolarity of the field enables the radio pulsar not to turn off, even after a considerable decrease in the pulsar-tube radius. For instance, with a 20% non-dipolarity (ν = 0.2), a pulsar with B = 1013 G and P = 0.5 s can still operate even for a fivefold decrease in the pulsar-tube radius. A maximum is observed in the dependence of the electrostatic potential in the diode on the non-dipolarity parameter ν at ν ~ 0.5–0.7. The pulse profile in non-thermal X-ray emission for ν ~ 0.5–0.7 may look virtually the same as for ν ~ 0.1–0.2. Decreases in the pulsar-tube radius could be due to a structure of currents in the magnetosphere that results in the pulsar diode on the neutron-star surface occupying only a small fraction of the pulsar tube, with the remainder of the tube containing an outer annular gap. The pulsar-tube size is also affected by the presence of a circum-pulsar disk. A change in the pulsar-tube radius could also be due to an external magnetic field, associated with either a magnetic white dwarf or a circum-pulsar disk.  相似文献   

15.
The flow structure in the asynchronous polar CD Ind was investigated in the approximation of an offset dipole. Computation results made it possible to identify such system features as the drift of hot spots over the white dwarf surface, the flow structure dependence on the phase of the beat period, and the magnetic pole switching. To study the flow structure, a three-dimensional numerical MHD model based on the approximation of modified magnetic hydrodynamics was used. Numerical calculations were performed for ten phases of the beat period at a constant rate of mass transfer. In addition, for a more detailed study of the poles switching, additional calculation series were carried out in the corresponding phase ranges of the beat period. The energy release zones during the spin-orbit period shift in longitude on average by 20°, which corresponds to 0.05 of the orbital period phase. The magnetic pole switching occurs in a time that does not exceed 0.1 of the beat period. In the middle of this process, accretion occurs on both poles with the same intensity, and the flow resembles an arch. Based on the calculation results, synthetic light curves were constructed for the optical range of the spectrum.  相似文献   

16.
A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.  相似文献   

17.
An efficient method for the detection and estimation of the parameters of the coronas of isolated white dwarfs possessing magnetic fields of about 107 G is tested. This method is based on the detection of thermal radiation of the coronal plasma at harmonics of the electron gyrofrequency, which is manifest as a polarized infrared excess. The Stokes parameters for the thermal cyclotron radiation from the hot corona of a white dwarf with a dipolar magnetic field are calculated. A new upper limit for the electron density, 1010 cm?3, in a corona with a temperature of ?106 K is found for the white dwarf G99-47 (WD 0553+053). This limit is a factor of 40 lower than the value derived earlier from ROSAT X-ray observations. Recommendations for subsequent infrared observations of isolated magnetic white dwarfs aimed at detecting their coronas or deriving better constraints on their parameters are presented.  相似文献   

18.
基于Modflow的岩溶管道概化与模拟探讨   总被引:2,自引:0,他引:2  
肖斌  许模  曾科  王梅 《地下水》2014,(1):53-55,78
在复杂岩溶介质中,由于岩溶形态存在小尺度的溶缝到大尺度的岩溶管道的变化,岩溶地下水流呈现为层流-紊流多种流态共存的复杂系统。对含水层中岩溶管道的准确概化是精确模拟复杂岩溶介质地下水流动的前提。在较为成熟的三维有限差分地下水流动模型(等效多孔介质)条件下寻找一种概化岩溶管道的方法,基于Modflow地下水流动模型,分别讨论模型软件中的单元渗流计算子模块( BCF )、排水沟子模块( DRN )、河流子模块( RIV )以及溪流子模块( STR)对岩溶管道的概化模拟效果,发现河流子模块( RIV)与溪流子模块( STR)是概化岩溶管道的最优模块。  相似文献   

19.
We consider the motion of a bubble in a central acceleration field created by gravity or a centrifugal force. In the former case, the bubble moves outwards from and, in the latter, towards the center. We have calculated the characteristic time needed for a bubble to leave or reach the center. The solution obtained provides insight into the processes of thermonuclear supernovae and combustion; in other words, into the interaction between a flame and a turbulent vortex. In the case of combustion, a light bubble of burnt material propagates towards the axis of a strong turbulent vortex faster than it drifts in the direction of rotation of the vortex. It is expected that the development of bubbles should prevent the formation of “pockets” at the flame front, similar to those predicted by a simplified model of turbulent combustion in a constant density flux. In the case of a thermonuclear supernova in a deflagration burning regime, it is shown that light products of burning rise from the center of the white dwarf substantially more rapidly than the thermonuclear flame front propagates. As a result, a flame cannot completely burn the central part of the star, and instead is pushed to the outer layers of the white dwarf. The effect of bubble motion (large-scale convection) makes spherically symmetric models for thermonuclear supernovae unrealistic, which is of prime importance for the supernova spectrum and energy. The motion of bubbles is even faster in the case of a rotating white dwarf; under certain conditions, the centrifugal force may dominate over the gravitational force. To test this theory, we have carried out numerical simulations of supernovae explosions for various sizes of the burned region in the core of the presupernova. We have derived a relation between the rate of large-scale convection and the size of the burned region, which is specified by the rate of the deflagration in the thermonuclear burning.  相似文献   

20.
岩溶地区地下发育着大量的溶洞和地下河管道,地下水流状态既有层流也有紊流,而紊流是溶洞管道形成的重要条件。紊流的形成受到岩石初始裂隙的影响,初始裂隙的张开度、分布、走向、迹长、密度等因素都影响着裂隙发育过程中水流状态的变化。通过对不同统计特征的初始裂隙网络进行水流和溶蚀的数值模拟发现,以张开度标准差反映的裂隙网络非均匀性越强,模拟紊流出现的时间就越早;主要裂隙的存在使裂隙网络的非均性增强,主要裂隙与水力梯度总方向的角度越小,紊流出现的时间就越早;当裂隙平均迹长过小时会导致裂隙连通性较差,影响裂隙水流和溶蚀作用;裂隙密度,尤其是主要裂隙密度,对岩溶发育的影响较大。相对于次要裂隙,如果主要裂隙密度偏小,紊流形成时间会大大增加,甚至很难形成紊流。当初始裂隙张开度小于0.001 cm,增大水力梯度仍没有紊流发生,岩溶几乎不发育。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号