首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the stellar parameters of the individual components of the two old close binary systems HIP 14075 and HIP 14230 using synthetic photometric analysis. These parameters are accurately calculated based on the best match between the synthetic photometric results within three different photometric systems with the observed photometry of the entire system. From the synthetic photometry, we derive the masses and radii of HIP 14075 as \({\mathcal {M}}^A=0.99\pm 0.19 \mathcal {M_\odot }\), \(R_{A}=0.877\pm 0.08 R_\odot \) for the primary and \({\mathcal {M}}^B=0.96\pm 0.15 \mathcal {M_\odot }\), \(R_{B}=0.821\pm 0.07 R_\odot \) for the secondary, and of HIP 14230 as \({\mathcal {M}}^A=1.18\pm 0.22 \mathcal {M_\odot }\), \(R_{A}=1.234\pm 0.05 R_\odot \) for the primary and \({\mathcal {M}}^B=0.84\pm 0.12 \mathcal {M_\odot }\) , \(R_{B}=0.820\pm 0.05 R_\odot \) for the secondary. Both systems depend on Gaia parallaxes. Based on the positions of the components of the two systems on a theoretical Hertzsprung–Russell diagram, we find that the age of HIP 14075 is \(11.5\pm 2.0\) Gyr and of HIP 14230 is \(3.5\pm 1.5\) Gyr. Our analysis reveals that both systems are old close binary systems (\(\approx > 4\) Gyr). Finally, the positions of the components of both the systems on the stellar evolutionary tracks and isochrones are discussed.  相似文献   

2.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

3.
We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (~166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3–150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\({\dot{m}}_{d}\)), sub-Keplerian accretion rate (\({\dot{m}}_{h}\)), shock location (\(r_{s}\)) and black hole mass (\(M_{\mathit{bh}}\)) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as \(L^{\mathrm{obs}}_{\mathrm{jet}} \sim3\mbox{--}6 \times10^{37}~\mbox{erg}\,\mbox{s}^{-1}\) during one of the observed radio flares which indicates that jet power corresponds to 8–16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (~14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2–7.9 \(M_{\odot}\) with 90% confidence.  相似文献   

4.
To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.  相似文献   

5.
The UV properties of 1152 Markarian galaxies have been investigated based on GALEX data. These objects have been investigated also in other available wavelengths using multi-wavelength data from X-ray to radio. Using our classification for activity types for 779 Markarian galaxies based on SDSS spectroscopy, we have investigated these objects on the GALEX, 2MASS and WISE color-magnitude and color-color diagrams by the location of objects of different activity types and have revealed a number of loci. UV contours overplotted on the optical images revealed additional structures, particularly spiral arms of a number of Markarian galaxies. UV (FUV and NUV) and optical absolute magnitudes and luminosities have been calculated showing graduate transition from AGN to Composites, HIIs and Absorption line galaxies from (average \(M\)) \(-17.56^{m}\) to \(-15.20^{m}\) in FUV, from \(-18.07^{m}\) to \(-15.71^{m}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(-21.14^{m}\) to \(-19.42^{m}\) in optical wavelengths and from (average \(L\)) \(7\times10^{9}\) to \(4 \times 10^{8}\) in FUV, from \(1\times 10^{10}\) to \(5\times10^{8}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(7\times10^{10}\) to \(1\times10^{10}\) in optical wavelengths.  相似文献   

6.
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.  相似文献   

7.
By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.  相似文献   

8.
Thorne–?ytkow objects (T?Os), originally proposed by Thorne and ?ytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of T?Os in close binary stars. The Galactic birth rate of T?Os is about \(1.5\times 10^{-4}~\hbox {yr}^{-1}\). Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of T?Os via the above different progenitors are \(1.7\times 10^{-5}\), \(1.2\times 10^{-4}\), \(0.7\times 10^{-5}\), \(0.6\times 10^{-5}~\hbox {yr}^{-1}\), respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.  相似文献   

9.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   

10.
Analysis of the radial velocities based on spectra of high (near the H α line) and moderate (4420–4960 Å) resolutions supplemented by the published radial velocities has revealed the binarity of a bright member of the young open star cluster χ Per, the star V622 Per. The derived orbital elements of the binary show that the lines of both components are seen in its spectrum, the orbital period is 5.2 days, and the binary is in the phase of active mass exchange. The photometric variability of the star is caused by the ellipsoidal shape of its components. Analysis of the spectroscopic and photometric variabilities has allowed the absolute parameters of the binary’s orbit and its components to be found. V622 Per is shown to be a classical Algol with moderate mass exchange in the binary. Mass transfer occurs from the less massive (\({M_1} = 9.1 \pm 2.7{M_ \odot }\)) but brighter (\(\log {L_1} = 4.52 \pm 0.10{L_ \odot }\)) component onto the more massive (\({M_2} = 13.0 \pm 3.5{M_ \odot }\)) and less bright (\(\log {L_2} = 3.96 \pm 0.10{L_ \odot }\)) component. Analysis of the spectra has confirmed an appreciable overabundance of CNO-cycle products in the atmosphere of the primary component. Comparison of the positions of the binary’s components on the T eff–log g diagram with the age of the cluster χ Per points to a possible delay in the evolution of the primary component due to mass loss by no more than 1–2Myr.  相似文献   

11.
The Be X-ray pulsar SMC X-3 underwent an extra long and ultraluminous giant outburst from 2016 August to 2017 March. The peak X-ray luminosity is up to \(\sim10^{39}~\mbox{erg/s}\), suggesting a mildly super-Eddington accretion onto the strongly magnetized neutron star. It therefore bridges the gap between the Galactic Be/X-ray binaries (\(L_{\mathrm{X}}^{\mathrm{peak}} \leq10^{38}~\mbox{erg/s}\)) and the ultraluminous X-ray pulsars (\(L_{\mathrm{X}}^{\mathrm{peak}} \geq10^{40}~\mbox{erg/s}\)) found in nearby galaxies. A number of observations were carried out to observe the outburst. In this paper, we perform a comprehensive phase-resolved analysis on the high quality data obtained with the Nustar and XMM-Newton, which were observed at a high and intermediate luminosity levels. In order to get a better understanding on the evolution of the whole extreme burst, we take the Swift results at the low luminosity state into account as well. At the early stage of outburst, the source shows a double-peak pulse profile, the second main peak approaches the first one and merges into the single peak at the low luminosity. The second main peak vanishes beyond 20 keV, and its radiation becomes much softer than that of the first main peak. The line widths of fluorescent iron line vary dramatically with phases, indicating a complicated geometry of accretion flows. In contrast to the case at low luminosity, the pulse fraction increases with the photon energy. The significant small pulse fraction detected below 1 keV can be interpreted as the existence of an additional thermal component located at far away from the central neutron star.  相似文献   

12.
The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10?–?24. We found that the autocorrelation width \(A_{\mathrm{w}} ^{n}\) of SC \(n\) during the second half of its ascending phase correlates well with the modified length that is defined as \(T_{\mathrm{cy}}^{n+2} - T_{\mathrm{a}}^{n}\). Here \(T_{\mathrm{cy}}^{n+2}\) and \(T_{ \mathrm{a}}^{n}\) are the length and ascent time of SCs \(n+2\) and \(n\), respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs (i.e., \(n+1\), \(n+2\)) are readily available at the time of the peak of SC \(n\). The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).  相似文献   

13.
We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model’s specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are \(6.8\pm0.6~\mbox{M}_{\mathrm{J}}\) and \(1.44\pm0.04~\mbox{R}_{\mathrm{J}}\). The star has a radius of \(1.67\pm0.05~\mbox{R}_{\odot}\). Our modelling sets the mean of the orbital inclination \(i\) at \(94.35\pm0.14^{\circ}\), with the star’s mean precession angle \(\phi_{p}\)\(49.1\pm5.0^{\circ}\) and obliquity \(\theta_{o}\)\(67.9 \pm 3.0^{\circ}\), though there are known ambiguities about the sense in which such angles are measured.Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter’s data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star’s precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of \(\sim30~\mbox{deg}\). The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star’s rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it that would be expected over long periods of time.The planet has a small but detectable backwarming effect on the star, which helps to explain the difference in brightness just after transit and just before occultation eclipses. In assessing these findings it is recognized that sources of uncertainty remain, notably with possible inherent micropulsational effects, variations from other components of the multiple star, stellar activity, differential rotation and the neglect of higher order terms (than \(r_{1}^{5}\)) in the fitting function, where \(r_{1}\) is the ratio of the radius of the star to the mean orbital separation of planet and host star.  相似文献   

14.
The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for \({>}\,6\) months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points \(L_{4}\) and \(L_{5}\), each extending longitude coverage by \(60^{\circ}\). Adding data also from the more distant point \(L_{3}\) extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/\(L_{1}\), \(L_{3}\), \(L_{4}\), and \(L_{5}\) over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.  相似文献   

15.
We report the results obtained by a broad-band (0.5–500 keV) data analysis of narrow-line Seyfert 1 galaxy NGC 4748 observed with an XMM-Newton/PN, INTEGRAL/ISGRI and SWIFT/BAT telescopes. This galaxy has a soft X-ray excess that is typical for the class of narrow-line Seyfert 1. The question of the origin of soft excess in such objects is still unclear. We tested and compared two spectral models for the soft X-ray spectra based on the different physical scenarios. The first one is based on the Done and Nayakshin model of two-phase accretion disc in a vertical direction, which includes two reflection zones with different ionization levels. According to this model, we found that a highly ionized reflection has the value of ionization \(\xi \sim 3000~\mbox{erg}\,\mbox{s}^{-1}\,\mbox{cm}\) and is mostly responsible for the soft excess. This reflection becomes comparable with a low ionized one (\(\xi \sim 30~\mbox{erg}\,\mbox{s}^{-1}\,\mbox{cm}\)) in moderate X-ray range. However, this model requires also an additional component at soft energies with \(kT\sim 300\) eV. The second model is an energetically self-consistent model and assumes that a soft excess arises from optically thick thermal Comptonization of the disc emission. Combination of the UV (from XMM/Optical monitor) and X-ray data in the latter model allowed us to determine a mass of the central black hole of \(6.9\times 10^{6}M_{\odot }\) and Eddington ratio \(\log_{L/L_{Edd}}\simeq -0.57\). Also, we were not able to rule out one of competing models using only X-ray spectra of NGC 4748.  相似文献   

16.
We investigate a method to test whether a numerically computed model coronal magnetic field \({\boldsymbol {B}}\) departs from the divergence-free condition (also known as the solenoidality condition). The test requires a potential field \({\boldsymbol {B}}_{0}\) to be calculated, subject to Neumann boundary conditions, given by the normal components of the model field \({\boldsymbol {B}}\) at the boundaries. The free energy of the model field may be calculated using \(\frac{1}{2\mu _{0}}\int ({\boldsymbol {B}}-{\boldsymbol {B}}_{0})^{2}\mathrm{d}V\), where the integral is over the computational volume of the model field. A second estimate of the free energy is provided by calculating \(\frac{1}{2\mu _{0}}\int {\boldsymbol {B}}^{2}\,\mathrm{d}V-\frac{1}{2\mu _{0}}\int {\boldsymbol {B}}_{0}^{2}\,\mathrm{d}V\). If \({\boldsymbol {B}}\) is divergence free, the two estimates of the free energy should be the same. A difference between the two estimates indicates a departure from \(\nabla \cdot {\boldsymbol {B}}=0\) in the volume. The test is an implementation of a procedure proposed by Moraitis et al. (Solar Phys.289, 4453, 2014) and is a simpler version of the Helmholtz decomposition procedure presented by Valori et al. (Astron. Astrophys.553, A38, 2013). We demonstrate the test in application to previously published nonlinear force-free model fields, and also investigate the influence on the results of the test of a departure from flux balance over the boundaries of the model field. Our results underline the fact that, to make meaningful statements about magnetic free energy in the corona, it is necessary to have model magnetic fields that satisfy the divergence-free condition to a good approximation.  相似文献   

17.
This paper considers disruption of triple close approaches with low initial velocities and equal masses in the framework of statistical escape theory in a three-dimensional space. The statistical escape theory is based on the assumption that the phase trajectory of a triple system is quasi-ergodic. This system is described by allowing for both energy and angular momentum conservation in the phase space. In this paper, “possibility of escape” is derived with the formation of a binary on the basis of relative distances of the participating bodies. The complete statistical solutions (i.e. the semi-major axis \(a\), the distributions of eccentricity \(e\) of the binary, binary energy \({E}_{{b}}\), escape energy \({E}_{{s}}\) of escaper, and its escape velocity \({v}_{{s}}\)) of the system are derived from the allowable phase space volumes and are in good agreement with the numerical results in the range of perturbing velocities \({v}_{{i}}\)(\(10^{ - 1} \le {v}_{{i}} \le 10^{ - 10}\)) and directions of \({v}_{{i}}(0 \le \alpha _{{i}},\beta _{{i}},\gamma _{{i}} \le \pi )\), \({i} = 1,2,3\). In this paper, the double limit process has been applied to approximate the escape probability. Through this process, it is observed that the perturbing velocity \({v}_{{i}} \to 0^{ +} \), as the product of the semi-major axis \(a\) of the final binary and the square of the escape velocity \({v}_{{s}}\) approach 2/3, i.e. \({a} {v}_{{s}}^{2} \to 2 / 3\), whatever direction of \(\mathbf{v}_{{i}}\) may be.  相似文献   

18.
The eruption of a large quiescent prominence on 17 August 2013 and an associated coronal mass ejection (CME) were observed from different vantage points by the Solar Dynamics Observatory (SDO), the Solar-Terrestrial Relations Observatory (STEREO), and the Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated the parameters of the erupting prominence from a radio absorption model and measured them from 304 Å images. The variations of the parameters as obtained by these two methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results were verified using movies in which the CME expansion was compensated for according to the measured kinematics. We found that the CME mass (\(3.6 \times 10^{15}\mbox{ g}\)) was mainly supplied by the prominence (\(\approx 6 \times 10^{15}\mbox{ g}\)), while a considerable part drained back. The mass of the coronal-temperature component did not exceed \(10^{15}\mbox{ g}\). The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to \(25~\mathrm{R}_{\odot }\). The aerodynamic drag was insignificant. The core formed during the CME rise to \(4~\mathrm{R}_{\odot }\) and possibly beyond. Some of its components were observed to straighten and stretch outward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.  相似文献   

19.
The photometry of eclipse white-light (W-L) images showing a moving blob is interpreted for the first time together with observations from space with the PRoject for On Board Autonomy (PROBA-2) mission (ESA). An off-limb event seen with great details in W-L was analyzed with the SWAP imager (Sun Watcher using Active pixel system detector and image Processing) working in the EUV near 174 Å. It is an elongated plasma blob structure of 25 Mm diameter moving above the east limb with coronal loops under. Summed and co-aligned SWAP images are evaluated using a 20-h sequence, in addition to the 11 July, 2010 eclipse W-L images taken from several sites. The Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) recorded the event suggesting a magnetic reconnection near a high neutral point; accordingly, we also call it a magnetic plasmoid. The measured proper motion of the blob shows a velocity up to \(12~\mbox{km}\,\mbox{s}^{-1}\). Electron densities of the isolated condensation (cloud or blob or plasmoid) are photometrically evaluated. The typical value is \(10^{8}~\mbox{cm}^{-3}\) at \(r=1.7~\mathrm{R}_{\odot}\), superposed on a background corona of \(10^{7}~\mbox{cm}^{-3}\) density. The mass of the cloud near its maximum brightness is found to be \(1.6\times10^{13}\) g, which is typically \(0.6\times10^{-4}\) of the overall mass of the corona. From the extrapolated magnetic field the cloud evolves inside a rather broad open region but decelerates, after reaching its maximum brightness. The influence of such small events for supplying material to the ubiquitous slow wind is noticed. A precise evaluation of the EUV photometric data, after accurately removing the stray light, suggests an interpretation of the weak 174 Å radiation of the cloud as due to resonance scattering in the Fe IX/X lines.  相似文献   

20.
We aim to probe the dynamic structure of the extended Solar neighborhood by calculating the radial metallicity gradients from orbit properties, which are obtained for axisymmetric and non-axisymmetric potential models, of red clump (RC) stars selected from the RAdial Velocity Experiment’s Fourth Data Release. Distances are obtained by assuming a single absolute magnitude value in near-infrared, i.e. \(M_{Ks}=-1.54\pm0.04\) mag, for each RC star. Stellar orbit parameters are calculated by using the potential functions: (i) for the MWPotential2014 potential, (ii) for the same potential with perturbation functions of the Galactic bar and transient spiral arms. The stellar age is calculated with a method based on Bayesian statistics. The radial metallicity gradients are evaluated based on the maximum vertical distance (\(z_{max}\)) from the Galactic plane and the planar eccentricity (\(e_{p}\)) of RC stars for both of the potential models. The largest radial metallicity gradient in the \(0< z_{max} \leq0.5\) kpc distance interval is \(-0.065\pm0.005~\mbox{dex}\,\mbox{kpc}^{-1}\) for a subsample with \(e_{p}\leq0.1\), while the lowest value is \(-0.014\pm0.006~\mbox{dex}\,\mbox{kpc}^{-1}\) for the subsample with \(e_{p}\leq0.5\). We find that at \(z_{max}>1\) kpc, the radial metallicity gradients have zero or positive values and they do not depend on \(e_{p}\) subsamples. There is a large radial metallicity gradient for thin disc, but no radial gradient found for thick disc. Moreover, the largest radial metallicity gradients are obtained where the outer Lindblad resonance region is effective. We claim that this apparent change in radial metallicity gradients in the thin disc is a result of orbital perturbation originating from the existing resonance regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号