首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time-relative positioning is a recent method for processing GPS phase observations. The operational method undertaken in this paper consists of the following steps: first, recording phase observations at a station of known coordinates; second, moving the GPS receiver to an unknown station (which can be located up to a few hundred meters away, dependint on what type of transportation – e. g., walking, motorcycle – is available) while continuously observing carrier phases; and, third, recording phase observations at a second station of unknown coordinates with a single GPS receiver. To obtain the position of the unknown station relative to the first (known) station, the processing method uses combined observations taken at two different epochs and two different stations with the same receiver. For this reason, the errors that vary between two epochs must be taken into account in an appropriate way, especially errors in satellite clock corrections and ephemerides, and errors related to tropospheric and ionospheric delays. Ionospheric modeling using IONEX files (the ionospheric maps calculated by the International GPS Service) was also tested to correct L1 phase observations. This method has been used to calculate short vectors with an accuracy of a few centimeters (for a processing interval of 30 s) using a single civil GPS receiver. ? 2001 John Wiley & Sons, Inc.  相似文献   

2.
星基增强系统(satellite based augmentation system,SBAS)通过地球同步轨道卫星实时播发导航卫星星历改正数和完好性参数,以提升用户定位精度和完好性.采用最小方差法解算GPS星历改正数,利用卡方统计进行改正数完好性检核,并依据星历改正数方差-协方差信息计算SBAS用户差分距离误差(us...  相似文献   

3.
基于区域参考站网的网络实时动态定位(real-time kinematic,RTK)方法是实现全球定位系统(global positioning system,GPS)、北斗卫星导航系统(BeiDou satellite navigation system,BDS)高精度定位的主要手段.研究了一种长距离GPS/BDS双...  相似文献   

4.
Accurate absolute GPS positioning through satellite clock error estimation   总被引:11,自引:0,他引:11  
 An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them. Received: 16 May 2000 / Accepted: 23 October 2000  相似文献   

5.
分析了单频GPS精密单点定位的特点,提出了先在卫星间求差,再在相邻历元间求差的单频GPS动态定位数学模型,实现了定位坐标的非线性参数估计求解方法。为了降低电离层延迟残差对单频PPP的影响,研究建立了一种相对电离层延迟模型,并基于神经网络理论,实现了相应的算法,通过计算实例进行了精度分析。  相似文献   

6.
1 IntroductionCurrently ,therealreadyexistseveralalgorithmsforthegenerationofdifferentialcorrections,forin stance ,thealgorithmbasedoncarrierfilteredcodeobservations (vanDierendonck ,1 993 ;Landau ,1 993 )andthealgorithmbasedoncodeobservationsandsequentialdiffere…  相似文献   

7.
The DGPS technique can provide considerably better relative positioning accuracy than the stand-alone GPS positioning, but the improvement depends on the distance between the user and the reference station (spatial correlation), the latency of differential corrections (temporal correlation), and the quality of differential corrections. Therefore, how to correctly generate differential corrections as well as their pricision is very important to the DGPS positioning technique. This paper presents a new algorithm for generating differential GPS corrections. This algorithm directly uses code and carrier observations in the measurement model of a Kalman filter, so that it is possible to use a simple stochastic model and to use the standard algorithm of the Kalman filter. The algorithm accounts for biases like multipath errors and instrumental delays in code observations and it shows how differential corrections are differently affected by code biases when dual or single frequency data is used. In addition, the algorithm can be integrated with a real time quality control procedure. As a result, the quality of differential corrections can be guaranteed with a certain probability.  相似文献   

8.
施闯  辜声峰  楼益栋  郑福  宋伟  张东  毛飞宇 《测绘学报》2022,51(7):1206-1214
广域实时精密定位与时间服务已成为GNSS应用领域研究热点,目前国内外学者围绕其模型算法已展开大量的研究。本文重点论述广域实时精密定位与时间服务数据的处理方法和服务系统,给出了基于不同基准约束的卫星钟差解算数学模型,提出通过引入外接原子钟测站、标准时间源(UTC/BDT)等不同时间基准,构建卫星拟稳基准、外接原子钟跟踪站拟稳基准及标准时间源等约束下的钟差解算模型,分析了时间基准对精密单点定位和精密单点授时的影响。本文采用实时卫星轨道、钟差、相位偏差、电离层延迟等服务产品及跟踪站实时数据,验证了系统产品可靠性及终端定位与时间服务性能。实测结果表明:GPS轨道径向精度1.8 cm,钟差STD精度约0.05 ns;BDS-3轨道径向精度6.7 cm,钟差STD精度优于0.1 ns;GPS和BDS-2电离层改正精度分别为0.74 TECU与1.03 TECU。基于该产品实现了用户端PPP、PPP-RTK及PPT、PPT-RTK服务,满足了用户实时厘米级定位和优于0.5 ns的单站时间传递服务,当采用GPS+BDS-2 PPP-RTK解算时,平面收敛至5 cm约需要12 min。  相似文献   

9.
利用单个基准站提供的改正信息对流动站的单频观测值数据进行改正,同时引入电离层参数进行实时电离层延迟估计,进行单频精密单点定位(PPP)计算。相比传统的单频PPP方法,本文方法对单频PPP的收敛速度和定位精度都有很大的提高,定位精度优于2cm,且受基准站距离的影响较小。  相似文献   

10.
The network-based approach to kinematic GPS positioning significantly increases the distance, over which carrier-phase ambiguity resolution can be performed. This can be achieved either by introducing geometric conditions based on the fixed reference locations, and/or through the use of reference network data to estimate the corrections to GPS observations that can be broadcast to the users. The Multi Purpose GPS Processing Software (MPGPS) developed at The Ohio State University uses the multiple reference station approach for wide area and regional differential kinematic GPS positioning. The primary processing algorithm uses the weighted free-net (WFN) approach with the distance-dependent weighting scheme to derive optimal estimates of the user coordinates and realistic accuracy measures. The WFN approach, combined with the single epoch (instantaneous) ambiguity resolution algorithm is presented here as one approach to real-time kinematic (RTK) GPS. Since for baselines exceeding ~100 km, the instantaneous ambiguity resolution may not always be possible due to the increasing observation noise and insufficient number of observations to verify the integer selection, an alternative approach, based on a single- (or multiple-) baseline solution, supported by a double-difference (DD) ionospheric delay propagated from the previous epoch is also presented. In this approach, some data accumulation, supported by the network-derived atmospheric corrections, is required at the beginning of the rover data processing to obtain the integer ambiguities; after this initialization period, the processing switches to the instantaneous RTK positioning mode. This paper presents a discussion on the effects of the network geometry, station separation and the data reduction technique on the final quality and reliability of the rover positioning solution. A 24-h data set of August 31, 2003, collected by the Ohio Continuously Operating Reference Station (CORS) network was processed by both techniques under different network geometry and reference station separation. Various solutions, such as (1) single-baseline solution for varying base-rover separation, (2) multi-baseline solution with medium-range base separation (over 100 km), and (3) multi-baseline solution with long-range base separation (up to 377 km), were obtained and compared for accuracy and consistency. The horizontal positioning accuracy achieved in these tests, expressed as the difference between the estimated coordinates and the known rover coordinates, is at the sub-decimeter level for the first approach, and at the centimeter-level for the second method, for baselines over 100 km. In the vertical coordinate, decimeter- and sub-decimeter levels were achieved for the two approaches, respectively. Even though all the results presented here were obtained in post-processing, both algorithms are suitable for real-time applications.  相似文献   

11.
GPS伪距改正及精密动态单点定位精度分析   总被引:3,自引:0,他引:3  
给出了GPS伪距定位在动态模式下的改正模型:对流层折射延迟、电离层延迟改正、地球自转改正、相对论效应改正、卫星天线和接收机天线改正、固体潮改正。并针对单频GPS接收机进行动态伪距定位的试验,分析了各项改正对GPS伪距定位的精度影响及综合改正后的精度分析。  相似文献   

12.
SBAS orbit and satellite clock corrections for precise point positioning   总被引:2,自引:0,他引:2  
The quality of real-time GPS positions based on the method of precise point positioning (PPP) heavily depends on the availability and accuracy of GPS satellite orbits and satellite clock corrections. Satellite-based augmentation systems (SBAS) provide such corrections but they are actually intended to be used for wide area differential GPS with positioning results on the 1-m accuracy level. Nevertheless, carrier phase-based PPP is able to achieve much more accurate results with the same correction values. We applied SBAS corrections for dual-frequency PPP and compared the results with PPP obtained using other real-time correction data streams, for example, the GPS broadcast message and precise corrections from the French Centre National d’Etudes Spatiales and the German Deutsches Zentrum für Luft- und Raumfahrt. Among the three existing SBAS, the best results were achieved for the North American wide area augmentation system (WAAS): horizontal and vertical position accuracies were considerably smaller than 10 cm for static 24-h observation data sets and smaller than 30 cm for epoch-by-epoch solutions with 2 h of continuous observations. The European geostationary navigation overlay service and the Japanese multi-functional satellite augmentation system yield positioning results with biases of several tens of centimeters and variations larger by factors of 2–4 as compared to WAAS.  相似文献   

13.
For GPS single frequency users, the ionospheric contribution to the error budget is estimated by the well-known Klobuchar algorithm. For Galileo, it will be mitigated by a global algorithm based on the NeQuick model. This algorithm relies on the adaptation of the model to slant Total Electron Content (sTEC) measurements. Although the performance specifications of these algorithms are expressed in terms of delay and TEC, the users might be more interested in their impact on positioning. Therefore, we assessed the ability of the algorithms to improve the positioning accuracy using globally distributed permanent stations for the year 2002 marked by a high level of solar activity. We present uncorrected and corrected performances, interpret these and identify potential causes for Galileo correction discrepancies. We show vertical errors dropping by 56–64 % due to the analyzed ionospheric corrections, but horizontal errors decreasing by 27 % at most. By means of a fictitious symmetric satellite distribution, we highlight the role of TEC gradients in residual errors. We describe mechanisms permitted by the Galileo correction, which combine sTEC adaptation and topside mismodeling, and limit the horizontal accuracy. Hence, we support further investigation of potential alternative ionospheric corrections. We also provide an interesting insight into the ionospheric effects possibly experienced during the next solar maximum coinciding with Galileo Initial Operation Capability.  相似文献   

14.
随着IGS实时服务的推广,实时轨道、钟差产品可用于实时PPP;然而,在一些通讯条件差的地方,如偏远山区和广袤的海洋,差分信号的播发与接收仍然是实时PPP的障碍。文中提出一种基于单个GPS/BDS信标台的实时PPP定位方法:基站采用广播星历和无电离层伪距、相位观测值,实时估计耦合轨道、钟误差;单向通讯的方式播发给用户端,减小通讯量,提高用户端的定位性能。经过分别距参考站约200km和300km的流动站进行验证,通过约10~12min收敛,GPS/BDS组合可得到水平优于20cm的定位精度。本案验证了采用广播星历进行实时PPP的可行性,为海洋和偏远地区提供一种高精度定位方法。  相似文献   

15.
分析了GPS天线积雪对载波信号场强、功率的影响,推导了载波信号传播延迟的简化计算公式,利用精密单点定位(PPP)计算了测站在GPS天线积雪产生和消除前后的单日解。结果显示,天线积雪使得天线相位中心产生偏移,对平面和高程方向的影响为数个cm,甚至更大。  相似文献   

16.
This paper is aimed at investigating the stability of point positions over time in support of applications that require high position stability when differential GPS is not feasible. One such application is the use of a P3-Orion aircraft offshore for magnetic measurement in support of submarine detection. Temporal changes in several GPS errors lead to variability in the computed positions, so it is not the absolute errors, but rather their temporal variations that are of importance. Furthermore, the temporal variability of the different error sources may dictate a certain algorithm approach and processing strategy. This paper analyzes the temporal variations of the broadcast satellite clock model and orbit parameters, as well as ionospheric errors, because these will typically be the dominant errors for real-time point positioning. These three errors are analyzed independently. A tropospheric correction is applied when computing all of the position results, so the tropospheric error itself is not investigated. Satellite clock and orbit errors are analyzed by comparing broadcast and precise post-mission SV clock corrections and orbits. For the ionosphere, the effect is separated using dual-frequency data. The analysis comprises primarily of assessing error behaviors and magnitudes through time and frequency analyses. In this way, the differences in variability of the errors are easily determined. The effect of each error in the position domain is also investigated in addition to the combined effect. Results show that, on a typical day when single frequency data are processed with broadcast orbit and clock data, the root mean square (RMS) of the changes in the position errors over a 50-s interval is about 5.8 cm in northing, 4.0 in easting, and 11.0 cm in height. When using precise orbits and clocks, in addition to dual frequency data, these values improve by 46–56% to 2.7 cm in northing, 2.2 cm in easting, and 4.9 cm in height. Under severe ionospheric activity, the RMS of the errors decrease from 8.1 to 3.3 cm in northing, 5.7 to 2.6 cm in easting, and 17.0 to 4.9 cm in height, which are improvements of 54–71%. Electronic Publication  相似文献   

17.
Precise GPS positioning requires the processing of carrier-phase observations and fixing integer ambiguities. With increasing distance between receivers, ambiguity fixing becomes more difficult because ionospheric and tropospheric effects do not cancel sufficiently in double differencing. A popular procedure in static positioning is to increase the length of the observing session and/or to apply atmospheric (ionospheric) models and corrections. We investigate the methodology for GPS rapid static positioning that requires just a few minutes of dual-frequency GPS observations for medium-length baselines. Ionospheric corrections are not required, but the ionospheric delays are treated as pseudo-observations having a priori values and respective weights. The tropospheric delays are reduced by using well-established troposphere models, and satellite orbital and clock errors are eliminated by using IGS rapid products. Several numerical tests based on actual GPS data are presented. It is shown that the proposed methodology is suitable for rapid static positioning within 50–70 km from the closest reference network station and that centimeter-level precision in positioning is feasible when using just 1 min of dual-frequency GPS data.  相似文献   

18.
针对单频精密单点定位(PPP)两种常用的定位模型:非组合模型和附加电离层约束模型,同时综合考虑电离层约束模型三种不同约束策略(常数约束,时空约束,逐步松弛),对比分析了其使用GPS单系统及GPS+BDS双系统观测值的定位收敛时间,定位精度及其优缺点. 实验结果表明:使用GPS单系统,附加不同电离层约束对单频PPP收敛时间缩短效果显著,其中逐步松弛约束平均收敛时间最短,其平均收敛时间为32.36 min,四种定位模型收敛后的定位精度基本相当. 加入北斗卫星导航系统(BDS)后,四种定位模型的收敛时间均有不同程度的缩短,其中时空约束模型缩短最为显著,收敛时间缩短为单系统的59.22%. 在定位精度方面,加入BDS观测值后水平方向定位精度可提升0.5~1.3 cm,垂直方向定位精度略有下降.   相似文献   

19.
GPS形变监测网基线处理中系统误差的分析   总被引:18,自引:3,他引:18  
分析了高精度GPS形变监测网基线处理中系统误差产生的原因,分类及其对基线处理的影响,并在此基础上提出消除和削弱这些系统误差影响的一些原则和算法。  相似文献   

20.
在GPS定位中,有时需要测站的高精度坐标,为此模糊度的解算和周跳的探测与修复成为关键问题,在周跳探测中,特别是小周跳的探测成为当今的热点问题。本文中利用接收机的双频观测值进行周跳的探测研究,通过实例分析,证明这两种方法可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号