首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
深海能源土是指含天然气水合物(俗称"可燃冰")的深海沉积物,其本构特性的模拟对可燃冰的安全开采至关重要。首先分析了水合物对能源土强度、剪胀和软化等力学特性的影响机理,水合物饱和度越大,对能源土力学特性影响越显著。然后在修正剑桥模型的基础上,通过引入水合物的饱和度和统一硬化参数来修正屈服函数,以反映水合物对能源土强度、剪胀、软化等特性的影响,建立了能考虑天然气水合物胶结作用形成及退化影响的深海能源土弹塑性本构模型,推导了相应的弹塑性矩阵。最后,通过模拟结果与已有能源土三轴试验数据对比分析,表明模型能很好地预测能源土强度、剪胀和软化等特性,验证了模型的合理性和有效性。  相似文献   

2.
非饱和土的本构模型研究   总被引:1,自引:0,他引:1  
缪林昌 《岩土力学》2007,28(5):855-860
引用平均土骨架应力的概念,研究推导出非饱和土的刚度参数随吸力变化而变化的关系式,进而推导得到用平均土骨架应力表述的非饱和土LC屈服面函数以及硬化规律。从土力学原理推导,得到土样由于在净应力和吸力作用下产生体积变形引起土样饱和度变化的关系式。由平均土骨架应力推广,得到三轴应力状态的椭圆屈服函数,这一非饱和土本构模型的优点在于考虑了应力作用后土样饱和度的变化,通过对已有试验数据的初步验证,表明提出的非饱和土本构模型的合理性和适用性。  相似文献   

3.
刘艳  韦昌富  赵成刚  房倩 《岩土力学》2013,34(8):2189-2194
高饱和度的非饱和土中由于气体处于封闭状态,其内部气压的变化必将对土体的行为产生影响。首先,对高饱和度非饱和土特性进行探讨和研究,随后,在已有非饱和土模型框架基础上,采用广义有效应力原理,建立一个适用于高饱和度条件下的非饱和土的弹塑性本构模型。模型中引入气相耗散的影响,在硬化方程中考虑封闭气体压力改变的影响。最后,利用已有的试验结果来对模型进行验证,并将模型预测结果与前人模型进行对比,表明模型预测可以很好地预测土体的行为,尤其是在高饱和度条件下其结果比其他模型更加接近实际情况。  相似文献   

4.
袁庆盟  孔亮  赵亚鹏 《岩土力学》2020,(7):2304-2312+2341
水合物的填充效应和胶结效应增大了能源土的密实性和强度,使能源土呈现出类似于密实砂土或胶结土的性质。在黏土和砂土的统一硬化模型(CSUH模型)框架下,总结了能源土的力学性质,引入压硬性参量描述水合物对能源土填充和胶结双重作用下的等向压缩特性,引入黏聚强度修正屈服函数并构建了黏聚强度的演变规律,利用状态参数调整剪胀方程,反映能源土剪胀、软化等特性对密实度的依赖性,从而建立能够描述能源土强度、刚度、剪胀与软化等特性的弹塑性本构模型。编制了模型的测试程序,把模拟结果与能源土室内试验结果进行对比。结果表明:提出的弹塑性本构模型能够较好地描述能源土的应力-应变关系、剪缩硬化和剪胀软化等力学特性。  相似文献   

5.
土结构性本构模型研究现状综述   总被引:3,自引:2,他引:3  
土本构模型的建立是一个重要而又复杂的问题,到目前为止,国内外学者们已提出数以百计的土本构模型,诸多文献也对这些模型进行了评述和归纳。然而这些土本构模型多是在扰动土或砂土的基础上发展和建立起来的,它们难以描述由于土结构性引起的各种非线性行为,其计算结果与实际情况相差甚远。天然土体一般都具有一定的结构性,所以有必要建立考虑土结构性影响的土本构模型。针对这个现实,目前有些学者已基于各种理论和方法,提出了一些可以考虑土结构性影响的土本构模型,并得了较好的应用。但在目前的文献中还很少有对土的结构性本构模型研究进行归纳,基于此,本文简要介绍了一下目前土的结构性本构模型研究现状,并提出了这些本构模型在应用中所存在的问题。  相似文献   

6.
李顺群  栾茂田  杨庆 《岩土力学》2006,27(9):1575-1578
当地下水位上升或地面遇水浸润时,土的饱和度将因毛细作用而变化,以此使土体产生变形。其中由于含水量增加而使土的重度增大,从而引起压缩变形;同时含水量的增加而使基质吸力下降,从而引起土的回弹变形,因此最终变形取决于上述两种变形趋势的综合效应。根据广义Hook定律、Fredlund的双应力状态变量及Brooks和Corey关于基质吸力与饱和度之间的经验关系,建立了K0状态下非饱和土的一维本构模型。将这一模型与分层总和法相结合,可以计算基质吸力变化时土的竖向变形。通过研究发现,非饱和土的地面变形不仅取决于土的性质与土层的厚度,而且依赖于土中吸力变化前后的分布及应力状态等因素。所建议的一维本构模型可以用于非饱和土地基上基础的沉降估算。  相似文献   

7.
土的本构模型研究现状及发展趋势   总被引:2,自引:0,他引:2  
雷华阳 《世界地质》2000,19(3):271-276
从两方面总结了前人关于土体本构关系的成果以及目前的发展状况:一方面,从宏观现象学角度介绍了剑桥模型、弹性-硬化塑性模型以及为描述循环荷载条件下土的本构特性所建立的多重屈服面模型和边界模型;另一方面,阐述了土的微观结构和土微结构力学模型的研究状况。认为今后的土本械模型研究趋势必将与土的结构性研究紧密相联,成为21世纪土力学的核心。  相似文献   

8.
杨期君  赵春风 《岩土力学》2014,35(4):991-997
天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。  相似文献   

9.
马田田  韦昌富  陈盼  魏厚振  伊盼盼 《岩土力学》2012,33(11):3263-3270
在修正剑桥模型的基础上,提出了一个非饱和土毛细滞回与骨架变形耦合的弹塑性本构模型。该模型考虑了基质吸力与饱和度对屈服应力的影响,可以同时描述非饱和土的弹塑性变形特性与毛细循环滞回效应。根据塑性体变的产生使非饱和土进气值增大的特点,建立了变形对土-水特征曲线影响的数学描述。该模型有效地考虑了饱和度对前期屈服应力的作用,准确地反映了土体在不同土-水状态条件下(脱湿和吸湿过程)强度特性的变化,而且还可以有效地描述水力循环历史对土体变形的影响。通过与试验数据对比,证明了该模型能够模拟非饱和土的主要力学特性。  相似文献   

10.
以饱和度与有效应力为状态变量,通过引入描述不饱和与饱和土孔隙比差的状态变量,将Zhang等提出的饱和土体应力诱导各向异性动弹塑性本构模型推广到不饱和土体中,使其可描述不饱和土在动力循环荷载作用下的力学特性行为。通过对已有不饱和土体在完全不排水条件下的动三轴试验进行理论模拟,验证了所提出不饱和土本构模型的正确性。最后基于所提出本构模型,讨论了在不排水条件下初始饱和度对不饱和土动力特性研究。结果表明,不饱和土在动力荷载作用下,土体的孔隙比将减少,导致饱和度增加;当初始饱和度较高时,不饱和土会转化为饱和土,从而发生液化现象。该研究成果对研究不饱和土在地震等动力荷载作用下的力学特性行为具有重要意义。  相似文献   

11.
蒋明镜  付昌  贺洁  申志福  朱方园 《岩土力学》2015,36(Z2):639-647
天然气水合物以胶结及孔隙填充等形式存在于深海能源土中,开采时因其分解会劣化地层力学特性进而引发海底事故,使得人们对能源土开采过程进行中力学特性的变化愈发重视。在前期室内试验的基础上,将一个温度-水压-力学二维微观胶结模型引入离散元商业软件PFC2D中,通过对排气、排水性较好的土体进行升温及降压法开采进行数值模拟,并将模拟结果与相同条件下的室内试验结果对比,验证了该胶结模型的适用性。进一步分析了颗粒接触分布与颗粒平均纯转动率(averaged pure rotation rate, APR)在水合物分解时的变化情况。升温分解过程中随温度升高,颗粒总接触分布各向异性程度增大;胶结接触逐渐减少并始终保持主方向为水平方向,无胶结接触增多并始终保持主方向为竖直方向;APR值逐渐增大且正负值分布逐渐趋于集中。降压分解过程中随反(水)压降低,颗粒总接触由各向同性分布逐渐发展为主方向为竖直方向的各向异性,APR值较小且分布均匀;恢复反压后,试样进一步破坏,颗粒总接触各向异性更加明显,APR值增大且正负值呈集中分布。  相似文献   

12.
In the present study, we have developed a numerical method which can simulate the dynamic behaviour of a seabed ground during gas production from methane hydrate‐bearing sediments. The proposed method can describe the chemo‐thermo‐mechanical‐seismic coupled behaviours, such as phase changes from hydrates to water and gas, temperature changes and ground deformation related to the flow of pore fluids during earthquakes. In the first part of the present study, the governing equations for the proposed method and its discretization are presented. Then, numerical analyses are performed for hydrate‐bearing sediments in order to investigate the dynamic behaviour during gas production. The geological conditions and the material parameters are determined using the data of the seabed ground at Daini‐Atsumi knoll, Eastern Nankai Trough, Japan, where the first offshore production test of methane hydrates was conducted. A predicted earthquake at the site is used in the analyses. Regarding the seismic response to the earthquake which occur during gas production process, the wave profiles of horizontal acceleration and horizontal velocity were not extensively affected by the gas production. Hydrate dissociation behaviour is sensitive to changes in the pore pressure during earthquakes. Methane hydrate dissociation temporarily became active in some areas because of the main motion of the earthquake, then methane hydrate dissociation brought about an increase in the average pressure of the fluids during the earthquake. And, it was this increase in average pore pressure that finally caused the methane hydrate dissociation to cease during the earthquake. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a numerical investigation into mechanical behavior and strain localization in methane hydrate (MH) bearing sediments using the distinct element method (DEM). Based on the results of a series of laboratory tests on the bonded granules idealized by two glued aluminum rods and the available experimental data of methane hydrate samples, a pressure and temperature dependent bond contact model was proposed and implemented into a two-dimensional (2D) DEM code. This 2D DEM code was then used to numerically carry out a series of biaxial compression tests on the MH samples with different methane hydrate saturations, whose results were then compared with the experimental data obtained by Masui et al. [9]. In addition, stress, strain, void ratio and velocity fields, the distributions of bond breakage and averaged pure rotation rate (APR) as well as the evolution of strain localization were examined to investigate the relationships between micromechanical variables and macromechanical responses in the DEM MH samples. The numerical results show that: (1) the shear strength increases as methane hydrate saturation SMH increases, which is in good agreement with the experimental observation; (2) the strain localization in all the DEM MH samples develops with onset of inhomogeneity of void ratio, velocity, strain, APR, and distortion of stress fields and contact force chains; and (3) the methane hydrate saturation affects the type of strain localization, with one shear band developed in the case of 40.9% and 67.8% methane saturation samples, and two shear bands formed for 50.1% methane saturation sample.  相似文献   

14.
Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.  相似文献   

15.
Mechanical properties of methane hydrate‐bearing soils are complex. Their behavior undergoes a significant change when hydrates dissociate and become methane gas. On the other hand, methane hydrates are ice‐like compounds and, depending on the hydrate accumulation habits and the degree of hydrate saturation, may cement soil particles into stronger and stiffer soils. A new constitutive model is proposed that is capable of capturing essential characteristics of hydrate‐bearing soils. The core of the model includes the spatial mobilized plane concept; a transformed stress, tij; the critical state; and the subloading framework. The proposed model gives soil responses due to stress changes or hydrate saturation changes or both. The performance of the model has been found satisfactory, over a range of hydrate saturation and confining pressures, using triaxial test data from laboratory‐synthesized samples and from field samples extracted from Nankai Trough, Japan. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Methane hydrate‐bearing sediments exist throughout the world in continental margins and in Arctic permafrost. Hydrates are ice‐like compounds when dissociate due to temperature rise or reduction in fluid pressure, release gas. Because of the mechanical property changes caused by dissociation in which the loads supported by the hydrates are transferred to soil grains, these sediments may become unstable. To quantify the risk of ground instability triggered by dissociation, which may happen during operation to extract methane gas or from climate changes, a reliable predictive model is indispensable. Even though many models have been proposed, a detailed validation of the ability to model dissociation impact is still needed. This study investigated the adequacy of an spatially mobilized plane constitutive model and a modeling framework using laboratory‐induced dissociation tests under shear from literature. Using laboratory‐imposed temperature and pressure changes and the resulting hydrate saturation changes as input, this study was able to capture the geomechanical responses and determine the stability state of methane hydrate‐bearing sediments as observed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
蒋明镜  贺洁  周雅萍 《岩土力学》2014,35(5):1231-1240
天然气水合物被公认是解决当前能源危机的潜在新型能源而备受关注。含水合物的海底土体称为深海能源土。水合物在能源土中有不同的赋存形式(如填充型水合物和胶结型水合物等),由于胶结型水合物对整体强度的贡献比其他存在形式更大,尤其是饱和度较低的情况。针对于胶结型水合物的赋存形式进行研究,水合物作为胶结物质存在于土颗粒之间,胶结厚度会在一定范围内变化。为真实地反映此现象,通过对能源土试样的电镜扫描图片整理分析,获得水合物饱和度与粒间胶结厚度的函数关系。基于前期已经完成的不同粒间胶结厚度下胶结力学特性的试验研究成果,为探究胶结厚度变化对能源土体宏观力学特性的影响,建立了考虑水合物胶结厚度的能源土粒间胶结模型,并介绍此模型中相关胶结参数及其确定方法。  相似文献   

18.
While methane hydrates (MHs) can be present in various forms in deep seabeds or permafrost regions, this paper deals with MH‐bearing sediments (MHBS) where the MH has formed bonds between sand grains. A bond model based on experimentally validated contact laws for cemented granules is introduced to describe the mechanical behavior of the MH bonds. The model parameters were derived from measured values of temperature, water pressure and MH density. Bond width and thickness adopted for each bond of the MHBS were selected based on the degree of MH saturation. The model was implemented into a 2D distinct element method code. A series of numerical biaxial standard compression tests were carried out for various degrees of MH saturation. A comparison with available experimental data shows that the model can effectively capture the essential features of the mechanical behavior of MHBS for a wide range of levels of hydrate saturation under drained and undrained conditions. In addition, the analyses presented here shed light on the following: (1) the relationship between level of cementation and debonding mechanisms taking place at the microscopic level and the observed macro‐mechanical behavior of MHBS and (2) the relationship between spatial distribution of bond breakages and contact force chains with the observed strength, dilatancy and deformability of the samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Methane hydrate (MH) is extensively found in outer continental margins where offshore infrastructures with pile foundations are also common. The presence of MHs significantly alters the mechanical properties of the host marine sediments, and therefore affects the behavior of piles inside. This paper presents an attempt to investigate the performance of a single pile in methane hydrate bearing sands in seabed using the distinct element method. A novel bond contact model was employed for sandy grains cemented by MHs at contacts, and calibrated from the triaxial compression tests on synthetic specimens of methane hydrate bearing sands. The response of the pile subjected to axial pullout loads and lateral loads was simulated under different subsurface conditions characterized by different saturation levels of MHs. The results show that the presence of MHs increases the uplift capacity of the pile by changing the failure mode of the soils from the perimeter failure to the conical failure. The uplift capacity of the pile significantly deteriorates as a result of de-bonding, while the onset of the rapid de-bonding triggers the softening of the uplift load. In addition, the lateral capacity of the pile largely increases due to the presence of MHs. The pile in methane hydrate bearing sands is considered flexible rather than rigid as a result of the increased deformation modulus of soils due to MH cementation between particles. The lateral load–displacement diagram of the pile in methane hydrate bearing sands is not as smooth as that in clean sands with an abrupt drop associated with the onset of de-bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号