首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
针对岩石力学试验声发射时差定位算法中时延估计精度受诸多不确定因素的影响问题,提出全相位相位差法时延估计,通过小波分解与全相位频谱分析相结合求解相位差得到声发射信号的时延估计。利用小波分解找到不同传感器接收到的声发射信号中的同一主频的子带信号;对这些同一主频的子带信号分别做全相位频谱分析,得到每个子带信号中间样点的相位,再根据相位差与时间差的关系求出声发射信号到达不同传感器之间的时间差;进而利用时差定位法反演声发射源,实现了声发射源更精确的定位。在花岗岩(50 mm×100 mm×50 mm)上进行断铅试验,选取10个测点,经声发射监测验证结果表明,该时延估计方法能有效地减小声发射源定位的误差,提高声发射源的定位精度,平均绝对误差比美国PCI-2型声发射仪器定位结果提高约3 mm,该方法为反演声发射源提供了一种有效途径。  相似文献   

2.
基于小波变换的岩石声发射信号互相关分析及时延估计   总被引:2,自引:0,他引:2  
声发射全波形采集为基于波形分析的声源定位方法提供了可能。声发射源定位方法中最常用的是时差定位方法,因此,时差获取精确与否直接影响定位的精度。借助于小波变换和互相关技术研究声发射信号的时延估计,首先利用小波分析技术对信号进行分解,确定有意义信号的频带宽度,再提取分解后的相应频带的小波系数,利用互相关技术计算出该频带信号到达各传感器的时差,进而利用时差定位法反演声发射源,实现了声发射源更精确的定位。经声发射监测验证结果表明,该时延估计方法能有效地减小声发射源定位的误差,提高声发射源的定位精度,为准确反演声发射源提供了一种有效途径。  相似文献   

3.
通过对含水砂岩进行单轴加载声发射试验,获取声发射信号。对整个加载过程声发射信号进行FFT变换,发现随着加载地进行,声发射信号的峰值频率由60 kHz下降到40 kHz,平均主频比自然状态下的砂岩平均主频降低了1 kHz;通过分析能量和岩石声发射事件数之间的关系,发现能量与对应声发射事件数之间的比值越大,说明能量是由较大的破裂导致的,而能量值与对应声发射事件数之间的比值越小(数量级在104以下),说明能量是由多个小破裂同时产生积聚而成的;用Welch法做功率谱估计,发现得到的声发射信号其功率谱大致分为A、B两种,B类功率谱对应信号的相位突变性强。选取一些较大能量信号,计算这些信号出现之前的B类型功率谱出现的几率,发现越接近破裂出现B类型功率谱的几率越大。研究结果为分析岩石破裂全过程的声发射特性提供了一条新的思路,也为声发射应用于岩石破裂失稳预报奠定了一定的工作基础。  相似文献   

4.
孙强  薛雷  朱术云 《岩土力学》2012,33(9):2575-2580
根据岩石脆性破坏的本构方程和三维重整化理论,推导出了岩石破裂前声发射信号激增的临界点所对应的应力和岩石峰值应力比值的数学表达式。通过测试深部紫红色砂岩单轴加载变形破裂全过程中力学与声发射特征,得到了全过程力学特征曲线、声发射能量累计数等相关数,发现岩石破裂前声发射突增点所对应的应力与岩石临界点相对应。单轴刚性加载条件下岩石脆性破裂前声发射突增点所对应的应力与峰值应力比值大部分近似在74%左右,误差在±9%以内。  相似文献   

5.
声发射技术在岩石力学领域中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
声发射技术在采矿工程、石油工程、土木工程、工程地质和岩石性质基础研究中得到越来越多的应用.作者对压头压人时岩石破碎与声发射参数之间的关系作了初步研究.试验结果表明,声发射图象能够反映岩石压人破碎机理,并且岩石压人硬度与声发射信号峰值平均幅度及积分平均幅度有明显的相关关系.  相似文献   

6.
详细介绍了所研制的岩石多功能剪切试验测试系统的主要功能、技术指标和仪器组成,并开展了一系列相关力学试验。该试验测试系统主要包括试验装置、测量系统和控制系统3部分,最大法向拉伸应力为40 MPa,最大法向压缩应力为120 MPa,最大水平剪切应力为120 MPa,试样尺寸为50 mm?50 mm?50 mm;可开展多种力学试验,包括直接拉伸试验、直接剪切试验、拉伸-剪切试验和压缩–剪切试验。利用该试验测试系统对花岗岩进行试验研究,研究结果表明:直接拉伸试验中,试样发生脆性破坏,声发射信号瞬间达到峰值,破坏断面表现出拉伸破坏特征;直接剪切试验中,试样发生多次破坏,破坏瞬间声发射信号均发生突增,破坏断面表现出剪切破坏特征;拉伸-剪切试验中,试样在拉应力作用下剪切强度显著降低,声发射信号在破坏阶段表现强烈,破坏断面既有拉伸破坏特征也有一定的剪切破坏特征。上述力学试验结果,表明了所研制的岩石多功能剪切试验测试系统能够开展多种力学试验,为进一步研究岩石的剪切力学特性提供新的测试手段。  相似文献   

7.
瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析   总被引:3,自引:0,他引:3  
利用深部岩爆模拟试验系统对花岗岩进行室内瞬时岩爆模拟试验,同时利用声发射系统采集试验过程中声发射信号,得到试验全过程应力和声发射波形信息时域图。结合声发射累计能量曲线特征,找到5个关键拐点,即花岗岩初始加载能量激增后产生的第一个拐点A、岩爆发生前两次明显的上升台阶处拐点B和C、岩爆发生时的能量突跃点D、最终峰值点E。将关键点处波形信号从全时域波形中提取出来并进行快速傅里叶变换,得到各关键点二维功率谱图,结果表明:花岗岩声发射主频值在加载初期时为106 kHz,随着荷载的增加,频率由低频向高频过渡,频带变宽且由单峰向多峰转化,频率成分复杂预示多种破裂模式的发生。岩爆前和最终岩爆时刻频带又变窄并恢复单峰,主频值降低至与初始加载时一致,约为106 kHz,预示着岩爆时刻花岗岩岩石高能量的释放。  相似文献   

8.
岩石压剪断裂过程中的超声波波谱特性研究   总被引:2,自引:0,他引:2  
岩石破裂过程中的声发射特性不仅与岩石种类有关 ,而且与受到的载荷和破裂进展密切相关 ,岩石受载时的声发射波谱中含有大量与微断裂有关的信息。本文通过岩石压剪加载时峰值前的声发射波谱特性分析 ,探讨了岩石压剪时的微断裂机理 ,揭示了岩石在压剪加载不同阶段的波谱特性与岩石初始非线性、线性响应和临界裂纹扩展之间的相关关系。实验结果表明 ,声发射波谱参数的变化对岩石微断裂进展的响应比载荷本身更为敏感。这一结论为岩石边坡稳定性分析 ,岩爆预测和采矿工程的安全性评估提供了十分有意义的实验依据。  相似文献   

9.
考虑不均质度的岩石声发射数值模拟研究   总被引:3,自引:0,他引:3  
宿辉  党承华  李彦军 《岩土力学》2011,32(6):1886-1890
利用离散元颗粒流软件模拟了岩石单轴压缩破坏过程,采用内嵌FISH语言,通过设置随机缺陷来建立不同均质度的岩石数值试样对岩石的声发射规律进行了研究。结果表明,不均质度对于岩石声发射特性有着重要影响,随不均质度的增加,试样的峰值强度下降,声发射总数大幅增加,空间分布也更为分散,声发射出现时间更早,持续时间更长,峰值后的声发射保持更高的强度;单轴应力状态下声发射最大强度出现时间相比峰值破坏时间有不同程度滞后,不均质度越高,滞后效应越明显,显示岩石破坏要早于声发射峰值出现时间。  相似文献   

10.
针对岩石力学试验中传统的声发射定位算法存在局限性,将灰狼算法(GWO)引入声发射定位研究中,该算法模仿了狼群的领导阶层与狩猎机制,用α、β、δ和ω 4种灰狼来模拟头狼领导,通过搜寻猎物、包围猎物和攻击猎物3个步骤实现目标的发现到捕获的全过程。在原始灰狼算法的基础上,针对其局部搜索能力欠佳的缺陷,修改收敛因子递减方式和淘汰最劣个体,提出基于种群记忆淘汰制的改进灰狼算法(BGWO)。基于预制裂隙岩石试件单轴压缩声发射试验结果,对比分析BGWO、GWO、引力搜索法(GSA)、Geiger算法、最小二乘法(LS)算法等5种定位算法的性能,发现改进后的BGWO算法在声发射定位搜索效率、搜索精度、稳定性和试验结果模拟方面效果优于其他算法。  相似文献   

11.
当微地震事件个数较多时,传统双差定位算法的数据存储量和计算量巨大,难以适应微震震源的定位。提出一种新的微震震源定位算法——混合差定位法。这种算法综合了双差定位算法和Geiger定位法的优点,不仅数据的存储量和计算量大大减小,且与双差定位相比,其定位结果不受初始震源丛的质心位置的影响。模型数据和实际微地震数据测试结果验证了该方法的有效性和实用性。   相似文献   

12.
13.
利用定向岩心进行AE法原地应力测量   总被引:2,自引:0,他引:2  
在北京市房山区迎风坡花岗闪长岩300m深钻孔中,采用以水泥端帽法为主的岩心定向技术,并在钻进和取心过程中采取特殊措施,在钻孔中距地表25m~301m整个深度段内取得了直径86mm的定向岩心。对深度294m的定向岩心进行了声发射Kaiser效应试验。岩石试件为圆柱形,直径30mm,高度75mm.在垂直方向,利用声发射Kaiser效应估计的垂直主应力为7.7MPa;在294m岩体静岩压力为7.9MPa;两者基本相同。在水平面内,对4个方向的试件进行声发射Kaiser效应试验,得到相应的各个方向的压应力,由此估算的水平最大和最小主应力分别为21.2MPa和12.1MPa.水平面内最大主应力的方向基本为SN方向。将声发射Kaiser效应测量结果与水压致裂法的测量结果进行对比,二者具有很好的一致性。   相似文献   

14.
The study of localized failure under controlled conditions can be accomplished within a laboratory setting with the University of Minnesota plane-strain compression apparatus. The device provides an opportunity to observe shear faulting and to compare displacements from acoustic emission (AE) sources with global measurements. A biaxial compression test on a sandstone specimen was performed with monitoring of AE. The plane-strain test showed that the shear fault was not formed until after peak load. Compaction of the shear fault was observed from the axial and lateral measurements of displacement and the orientation of the failure plane. The AE events were modeled as displacement discontinuities. The complicated deconvolution process for the transducer transfer function was eliminated by using a simplified calibration procedure. The sources of the postpeak events were characterized as being caused predominantly by slip in the direction of the global failure plane, although components of displacement associated with closing were identified. To provide an order of magnitude estimate of the slip, the field observation of a 10−4 strain drop over the seismic area was assumed. The tangential displacement from 110 AE events was estimated to be 0.01 mm. During the same period of time, the displacement along the shear fault from global measurements was 0.03 mm.  相似文献   

15.
陈国庆  唐鹏  李光明  李晋  朱振飞 《岩土力学》2019,40(5):1649-1656
岩桥破坏的声发射研究一般只针对计数、能量等参数来分析。为探究岩桥直剪试验的声发射频谱特征,对岩桥进行声发射测试,利用时频分析方法对声发射波形信息进行研究,分析了其频谱特征。结果表明,直剪试验中幅值比计数率变化明显,且发生激烈响应的时间较早;主频基本呈高低频带状分布;主频带向中频分散和低频高幅值的声发射特征可作为试验主破裂的前兆信息,且前者出现较早;与单轴压缩试验相比,幅值在主破裂阶段区别明显,且此时出现中频值;声发射幅值由颗粒所受应力决定,频率与颗粒力链的最终位移有关;岩桥宽度增加,主频带整体升高;法向应力增加,平均主频值减小。研究可为节理边坡的稳定性分析提供参考依据。  相似文献   

16.
长江中下游干流河底沉积物环境磁性特征   总被引:8,自引:5,他引:3       下载免费PDF全文
通过多参数磁性测量,分析探讨了长江中下游干流3种不同粒级(<2mm,<0.28mm和<0.125mm)河底沉积物中磁性矿物的类型、含量、颗粒变化及空间分布特征。3种粒级中,磁性矿物主要富集在<0.125mm的细质沉积物中。对细质沉积物的分析表明,长江中下游干流河底沉积物的磁性矿物含量较长江口高近10倍,类型以亚铁磁性矿物磁铁矿为主,颗粒以假单畴-多畴为主,超顺磁性颗粒含量较低。从中游到下游,磁性矿物含量呈下降趋势,颗粒呈变细趋势。干流磁性矿物含量远高于支流,颗粒远粗于支流,支流泥沙的汇入不断影响干流沉积物的磁性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号