首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
A series of novel long-chain 3,4-dialkylthiophenes (C36–C54) was identified in a number of sediments ranging from Pleistocene to Cretaceous. The identifications were based on mass spectral characterisation, desulphurisation and mass spectral data of synthesised model compounds. These organic sulphur compounds are probably formed by sulphur incorporation into mid-chain dimethylalkadienes with two methylenic double bonds. These putative precursor lipids are unprecedented and may be considered rather unusual. The distribution of 3,4-dialkylthiophenes in sediments varies considerably with the depositional palaeoenvironment, indicating that these compounds have a potential as molecular markers reflecting changes in palaeoenvironment.  相似文献   

3.
The mixing properties of aluminosilicate melts in the systems NaAlSi4O10-KAlSi4O10 and NaAlSi5O12-KAlSi5O12 have been determined by measuring the compositions of their saturated vapours by Knudsen cell mass spectrometry. The melts mix very close to ideally over the whole composition range in agreement with theoretical models and the predictions of our previous work.  相似文献   

4.
对长岭凹陷深层天然气藏储层——营城组火山岩中发育的流体包裹体进行了详细研究,结果表明在火山岩发育的石英、方解石细网脉中均存在较多的碳质流体包裹体,单个包裹体激光拉曼光谱分析结果表明其主要为CO2及CH4两种类型的碳质包裹体。其中方解石细网脉体中发育有原生及次生CH4包裹体,而含CO2包裹体多以原生包裹体产于石英细网脉中。很多含CO2包裹体的石英细脉中发现了含CH4包裹体的方解石脉体的角砾,这就表明石英细脉形成晚于方解石细脉。营城组火山岩储层中CO2及CH4包裹体的产状特征研究表明,松辽盆地深层天然气藏的形成系火山岩成岩后CO2及CH4等气体不同期次充注的结果,CH4气的充注时间早于CO2气,火山岩中发育的原生孔隙及次生裂隙为上述气体的充注和聚集提供了重要通道。  相似文献   

5.
Relatively little work has been published on the correlation between the light hydrocarbon distributions in reservoir fluids and their proposed source rocks [Philippi, G. T. (1981)]. The aim of our work was to study this relationship in detail for samples from Mid-Norway. The main source rocks offshore Mid-Norway are the marine shales of the Late Jurassic Spekk Formation and the coals and paralic shales of the Early Jurassic Åre Formation. Reliable light hydrocarbon (C4–C13) data for source rock samples were acquired by thermal extraction-GC of the source rocks. Of these, notably the hydrocarbons in the C6–C8 range (routinely measured in test fluids) were used to discriminate between the Spekk and Åre Formation samples. A total of twenty-six samples from the Spekk Formation and twenty-four samples from the Åre Formation at different maturity levels and facies were analyzed. In general, the two source rock types differ in their light hydrocarbon composition by the presence of relatively more aromatics and cyclohexanes in the Åre samples, while the Spekk samples are richer in cyclopentanes and acyclic hydrocarbons. We show that source rock facies is a more important indicator of light hydrocarbon composition than maturity variation. Differences in the chemical composition, which can be used to discriminate between the two source rocks, were supported by differences in the carbon isotope composition of individual components of the same fraction, as determined by GHM-IR-MS analysis of eleven samples. Further, the light hydrocarbon compositions of reservoir fluids (oils and condensates) were compared with those for the source rock(s). Sixty-six gas chromatograms of oils and condensates, representing most of the known petroleum accumulations in Mid-Norway, were collected. Of these, five oil samples were selected for detailed isotopic analysis of individual components (GC-IR-MS). When using a classification scheme based on data from sediment samples, data for the light hydrocarbon fraction of oils and condensates indicate that the Spekk Formation is the dominant source for most of the fields from Mid-Norway, with a significant contribution from the Åre Formation being detected principally in one field. Differences in the chemical composition of the C6–C8 fractions were supported by differences in the carbon isotope composition of individual components, which also discriminate between the oils. Although the classification diagrams used in this study are based on source rock data from Mid-Norway, the method can be applied to other areas, providing that the diagrams are calibrated with source rock data from the area of interest.  相似文献   

6.
Series of n-alkyl and isoprenoid thiophenes and thiolanes, most of which have not been previously reported, have been identified in an extract from a Messinian (Upper Miocene) marl layer deposited under hypersaline, euxinic conditions. The identifications were based on mass spectra and Chromatographic data of synthesized reference compounds and on comparison of mass spectra, relative retention times and response on the FPD. Their specific structures and their distribution patterns show similarities with those of the alkanes. Inorganic sulphur is therefore considered to be incorporated into specific lipid moieties from (archae)bacterial and/or algal input during diagenesis. A biosynthetic origin of these compounds is also possible, however. The organic sulphur compounds encountered are thought to be indicators of a hypersaline depositional environment.  相似文献   

7.
Keilite (Fe>0.5,Mg<0.5)S, the iron-dominant cubic analog of niningerite, (Mg>0.5,Fe<0.5)S, occurs in enstatite chondrites [Shimizu, M., Yoshida, H., Mandarino, J.A., 2002. The new mineral species keilite, (Fe,Mg)S, the iron-dominant analog of niningerite. Can. Mineral. 40, 1687–1692]. I find that keilite occurs only in enstatite chondrite impact-melt rocks and impact-melt breccias. Based on the phase relations in the system MgS–MnS–CaS–FeS [Skinner, B.J., Luce, F.D., 1971. Solid solutions of the type (Ca,Mg,Mn,Fe)S and their use as geothermometers for the enstatite chondrites. Am. Mineral. 56, 1269–1296], I conclude that keilite formed from niningerite or alabandite (Mn>0.5,Fe<0.5)S by reaction with troilite (FeS) at elevated temperatures of well above 500 °C (the lowest equilibration temperature of keilite), but it is likely that the maximum temperatures during melting experienced by keilite-bearing impact-melt rocks and impact-melt breccias were considerably higher, perhaps >1500 °C, as indicted by the occurrence of euhedral enstatite that formed from a melt [McCoy, T.J., Dickinson, T.L., Lofgren, G.E., 1999. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746]. Based on the classifications of the keilite-bearing meteorites as impact-melt rocks and impact-melt breccias and my own textural observations, I conclude that this elevated temperature was reached as a result of impact and not internal heating and melting, followed by fast cooling, thus, quenching in keilite. Enstatite chondrite impact-melt rocks and impact-melt breccias that do not contain keilite may have been more deeply buried after impact and, hence, cooled slowly and were annealed so that FeS exsolved from keilite, concomitant with the formation of niningerite, alabandite or various (Mn,Mg,Fe) mixed sulfides.  相似文献   

8.

植被中C4植物比例与气候条件和生态系统类型密切相关,了解C4植物扩张历史对于理解过去生态系统格局演化以及古气候变化具有重要科学意义。本研究在已有古地磁年代基础上,通过对泥河湾盆地郝家台NHA钻孔224.2~175.4 m段内243个沉积物样品的碳酸盐δ13C分析,结合δ18O、地球化学元素、粒度等环境代用指标测试,揭示了泥河湾盆地上新世3.66~2.89 Ma期间的C4植物扩张历史。研究结果显示:1)泥河湾盆地3.66~2.89 Ma期间,δ13C均高于-7‰,且δ13C值整体呈现波动上升的趋势,指示了研究时段内泥河湾盆地C3、C4植物共存,C4植物总体呈现出明显扩张的趋势,其中约3.58 Ma和约3.10 Ma为研究时段内两次最为明显的C4植物扩张重要时间节点;2)3.58 Ma之前,δ13C多低于-5‰,植被以C3植物为主,3.58~3.10 Ma期间δ13C含量在-5‰至-3‰之间波动,气候趋向干旱化方向发展,C4植物所占比例有所增加;3)3.10 Ma之后的全球性冷干事件导致泥河湾盆地气候显著变冷变干,尤其是干旱化程度显著增强,δ13C多高于-3‰,指示泥河湾盆地C4植物出现显著扩张,以C4植物为主的草本植被占比可能超越C3植物,成为区域主要的植被类型;4)C4植物扩张过程中,也存在数次波动,如在约3.46 Ma、约3.38 Ma、约3.28 Ma和约3.13 Ma等时段内出现数次持续时间较短的δ13C明显低值,分别可以与全球深海氧同位素阶段(MIS)明显冷时期对应的MG6、MG4、M2和KM2相一致,但这些低值呈现出随时间推移,δ13C值逐渐升高的趋势,显示C4植物的影响逐渐加强。

  相似文献   

9.
以二价锰盐还原KMnO4的方法合成锰矿物,运用X射线衍射(XRD)和扫描电镜(SEM)等手段对矿物的结构进行表征,探讨合成体系中锰摩尔比R(Mn2+:Mn7+)(分别为1∶1、1∶2、1∶3、1∶4)、合成温度(分别为30℃、50℃、70℃、90℃、110℃)以及阴离子类型(分别为Cl-、SO42-、NO3-)等条件对锰矿物形成的影响.研究表明:随着R从1∶1到1∶4逐渐减小,形成的锰矿物由锰钾矿向水钠锰矿转变,锰氧化度也相应的增加;阴离子类型的不同会影响反应所得矿物的种类和结晶度;随着合成温度的升高,锰矿物的结晶度增大,锰氧化度略有升高.  相似文献   

10.
The δ13C and δ18O values of well-preserved carbonate rhizoliths (CRs) provide detailed insights into changes in the abundance of C3 and C4 plants in response to approximately decadal-scale changes in growing-season climate. We performed stable isotope analyses on 35-40 CRs sampled at 1-cm intervals from an 18-cm-thick paleosol formed in southern Illinois during Wisconsin interstadial 2. Minimum δ13C values show little variation with depth, whereas maximum values vary dramatically, and average values show noticeable variability; maximum δ18O values vary less than the minimum δ18O values. These findings indicate that a diverse and stable C3 flora with a limited number of C4 grass species prevailed during this interval, and suggest that the maximum growing-season temperatures were relatively stable, but minimum growing-season temperatures varied considerably. Two general patterns characterize the relationships between the δ13C and δ18O values obtained from the 1-cm samples. In some cases, low δ13C values correspond to low δ18O values and high δ13C values correspond to high δ18O values, suggesting that cooler growing-season temperatures favored C3 and warmer growing-season temperatures favored C4 plants. In other cases, low δ13C values correspond to high δ18O values, likely suggesting that wetter growing-season conditions were favorable to C3 plants. The high density of well-preserved CRs in this paleosol provides a unique opportunity to study detailed ecological responses to high-resolution variability in growing-season climate.  相似文献   

11.
Reaction rims of titanite on ilmenite are described in samples from four terranes of amphibolite-facies metapelites and amphibolites namely the Tamil Nadu area, southern India; the Val Strona area of the Ivrea-Verbano Zone, northern Italy, the Bamble Sector, southern Norway, and the northwestern Austroalpine Ötztal Complex. The titanite rims, and hence the stability of titanite (CaTiSiO4O) and Al–OH titanite, i.e. vuaganatite (hypothetical end-member CaAlSiO4OH), are discussed in the light of fH2O- and fO2-buffered equilibria involving clinopyroxene, amphibole, biotite, ilmenite, magnetite, and quartz in the systems CaO–FeO/Fe2O3–TiO2–SiO2–H2O–O2 (CFTSH) and CaO–FeO/Fe2O3–Al2O3–SiO2–H2O–O2 (CFASH) present in each of the examples. Textural evidence suggests that titanite reaction rims on ilmenite in rocks from Tamil Nadu, Val Strona, and the Bamble Sector originated most likely due to hydration reactions such as clinopyroxene + ilmenite + quartz + H2O = amphibole + titanite and oxidation reactions such as amphibole + ilmenite + O2 = titanite + magnetite + quartz + H2O during amphibolite-facies metamorphism, or, as in the case of the Ötztal Complex, during a subsequent greenschist-facies overprint. Overstepping of these reactions requires fH2O and fO2 to be high for titanite formation, which is also in accordance with equilibria involving Al–OH titanite. This study shows that, in addition to P, T, bulk–rock composition and composition of the coexisting fluid, fO2 and fH2O also play an important role in the formation of Al-bearing titanite during amphibolite- and greenschist-facies metamorphism.  相似文献   

12.
The Flores diving cruise was part of the MAST III-AMORES (1995-1998) program funded by the European Union. One of the major achievements of the Flores cruise was the discovery of the Rainbow hydrothermal field hosted in ultramafic rocks south of the Amar segment on the Mid-Atlantic ridge (MAR). The Rainbow hydrothermal fluids exhibit temperatures of 365 °C, pH of 2.8, high chlorinity (750 mmol/kg), and low silica (6.9 mmol/kg). The uniformity in endmember major, minor, trace element concentrations and gas contents suggests that all Rainbow fluids originate from the same deep source. Although H2S content is relatively low (1.20 mmol/kg), all vent fluids show extraordinary high H2 (16 mmol/kg), CH4 (2.5 mmol/kg) and CO (5 μmol/kg) endmember concentrations compared to fluids collected from other vent sites along the MAR. Hydrogen represents more than 40% of the total gas volume extracted from the fluids. At Rainbow, H2 production is likely associated with alteration of olivine and orthopyroxene minerals during serpentinization. Given that exposures of ultramafic rock may be common, particularly along slow-spreading ridges, the production of H2 may have important implications for microbial activity at and beneath the seafloor.  相似文献   

13.
Refinements have been made to achieve over 99% yield in the conversion of CO to CO2 in order to improve the reproducibility and accuracy of δ18 O measurements in sulfates. BaSO4 (10-15 mg) was mixed with an identical amount of spectrographic-grade graphite and loaded into a Pt boat. The mixture was gradually heated to 1100 °C to reduce sulfate to CO and CO2; the former gas was simultaneously converted to CO2 by a glow discharge between Pt electrodes immersed in a magnetic field (produced by a pair of external neodymium magnets). A small memory effect was noticed during the analysis (less than 0.3‰ per 10‰ difference in δ18 O between two subsequently analysed samples). The memory effect, however, was suppressed by repetitive preparation of the same specimen. CO2 produced in this way from sulfate reference samples was analysed on a dual inlet and triple collector mass spectrometer along with CO2 equilibrated with VSMOW, GISP and SLAP water reference samples. To avoid large departures of measured isotope ratios from 18O/16O of the working calibrator we used CO2 gas prepared from ocean water sulfate for this purpose. The calibrated δ18 O values (in ‰) obtained in this way for NBS-127, IAEA SO-5 and IAEA SO-6 reference materials were 8.73 ± 0.05, 12.20 ± 0.07 and -10.43 ± 0.12, respectively.  相似文献   

14.
A simple and selective method of flow injection (FI) using a micro-column packed with chelating resin YPA4 as solid phase extractant was developed for the preconcentration and separation of trace amount of noble metals, Au(III), Ag(I), Pd(II) and Pt(IV), followed by ICP-AES determination. In HNO3 media, the chelating resin was selective towards Au(III), Ag(I), Pd(II) and Pt(IV), and the analysed ions were readily desorbed quantitatively with 5 ml of 2.5% m/v thiourea. Effects of acidity, sample flow rate and concentration, elution solution and interfering ions on the recovery of the analytes were systematically investigated. Under optimum conditions, the adsorption capacities of YPA4 for Au(III), Ag(I), Pd(II) and Pt(IV) were 67.2, 43.1, 64.8 and 27.6 mg per gram of resin in HNO3 media, respectively. It was found that YPA4 could be used for more than eight runs in HNO3 media without loss of capacity. The proposed method was used for the determination of trace noble metals in geological and environmental samples, and the analytical results obtained were in good agreement with the recommended values.  相似文献   

15.
Modelling the sorption properties of coals for carbon dioxide under supercritical conditions is necessary for accurate prediction of the sequestering ability of coals in seams. We present recent data for sorption curves of three dry Argonne Premium coals, for carbon dioxide, methane and nitrogen at two different temperatures at pressures up to 15 MPa. The sorption capacity of coals tends to decrease with increasing temperature. An investigation into literature values for sorption of nitrogen and methane by charcoal also show sorption capacities that decrease dramatically with increasing temperature. This is inconsistent with expectations from Langmuir models of coal sorption, which predict a sorption capacity that is independent of temperature. We have successfully fitted the isotherms using a modified Dubinin–Radushkevich equation that uses gas density rather than pressure. A simple pore-filling model that assumes there is a maximum pore width that can be filled in supercritical conditions and that this maximum pore width decreases with increasing temperature, can explain this temperature dependence of sorption capacity. It can also explain why different supercritical gases give apparently different surface sorption capacities on the same material. The calculated heat of sorption for these gases on these coals is similar to those found for these gases on activated carbon.  相似文献   

16.
A set of correlations for the volumetric properties and enthalpies of phases in the system H2O-NaCl as a function of temperature, pressure, and composition has been developed that yields accurate values from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. The volumetric properties of all fluid phases from low-density vapor to hydrous salt melts and single-phase binary fluids at high pressures and temperatures, can be described by a simple equation
  相似文献   

17.
Garnet–clinopyroxene ultra‐high‐pressure (UHP) rocks from the northern Bohemian Massif contain zircon with micro‐diamond inclusions. Trace element concentrations, oxygen and hafnium isotopic composition and U–Pb age of distinct textural domains in zircon characterize their growth conditions and temporal evolution. Diamond‐bearing zircon mantle domains with relicts of oscillatory zoning have uniform Th/U ratios (~0.1–0.2), high‐Ti contents (110–190 ppm, corresponding to temperatures of at least 1100 °C), and some (two of 17 mantle analyses) preserve steep heavy rare earth element (HREE) patterns with YbN/GdN = 10–11, with a weak negative Eu anomaly. These signatures are consistent with crystallization from a melt under UHP/ultra‐high‐temperature (UHT) conditions. Some of the bright‐cathodoluminscence (CL) rims preserve Th/U and Ti values characteristic of the zircon mantles, but others show elevated Th/U ratios of ~0.3–0.4 and lower Ti contents (20–40 ppm; only 13 ppm in a rare low‐CL outer rim). As they feature flat HREE patterns and negative Eu anomalies and commonly make embayments and truncate the mantle zoning, we suggest that they have formed through recrystallization in the solid state during exhumation of the rock, when both garnet and plagioclase were stable. The three zircon domains, that is, cores, mantles and rims, yield U–Pb concordia ages of 340.9 ± 1.5, 340.3 ± 1.5 and 341.2 ± 3.4 Ma respectively. When linked to the previously reconstructed P–T path of the rock, the error limits of the zircon mantle and rim ages constrain the exhumation of the rocks from depth of ~140 km (UHP) to ~80 km (HP) to a minimum rate of 1.5 cm yr?1. The zircon cores are heterogeneous in terms of Th/U ratio (below 0.1 but also above 0.2) and REE characteristics, and their εHf values scatter between ?15.7 and +4.8 with similar values for individual domains within a single zircon grain suggesting a very localized control on hafnium isotope composition on a grain scale. The non‐equilibrated εHf values as well as a large range of the Hf‐depleted mantle model ages possibly reflect the presence of a heterogeneous population of old zircon. Consequently, the uniform and young 238U/206Pb ages may represent (near‐)complete resetting of the U–Pb geochronometer during the UHP–UHT event at c. 340 Ma through dissolution–reprecipitation process. In contrast to Hf, the oxygen isotope composition of zircon is homogeneous, ranging between 7.8‰ and 9.6‰ VSMOW, reflecting a source containing upper crustal material and homogenization at UHP–UHT conditions. Our study documents that continental crust was subducted to mantle depths at c. 340 Ma during the Variscan orogeny and was subsequently very rapidly exhumed, implying that the sequence of events was faster than can be resolved by the secondary ion mass spectrometry technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号