首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T.D. Price  B.G. Ruessink   《Marine Geology》2008,251(1-2):98-109
This paper builds on the work of Masselink [Masselink, G., 1993. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. SI 15, 180–197.] on the use of the residence times of shoaling waves, breaking waves and swash/backwash motions across a cross-shore profile to qualitatively understand temporal beach behaviour. We use a data set of in-situ measurements of wave parameters (height and period) and water depth, and time-exposure video images overlooking our single-barred intertidal measurement array at Egmond aan Zee (Netherlands) to derive boundaries between the shoaling zone, the surf zone and the swash zone. We find that the boundaries are functional dependencies of the local relative wave height on the local wave steepness. This contrasts with the use of constant relative wave heights or water levels in earlier work. We use the obtained boundaries and a standard cross-shore wave transformation model coupled to an inner surf zone bore model to show that large (> 5) relative tide ranges (RTR, defined as the ratio tide range–wave height) indicate shoaling wave processes across almost the entire intertidal profile, with surf processes dominating on the beach face. When the RTR is between 2 and 5, surf processes dominate over the intertidal bar and the lower part of the beach face, while swash has the largest residence times on the upper beach face. Such conditions, associated with surf zone bores propagating across the bar around low tide, were observed to cause the intertidal bar to migrate onshore slowly and the upper beach face to steepen. For RTR values less than about 2, surf zone processes dominate across the intertidal bar, while the dominance of swash processes now extends across most of the beach face. The surf zone processes were now observed to lead to offshore bar migration, while the swash eroded the upper beach face.  相似文献   

2.
The Santa Cruz coastal terrace fringes much of the northern Monterey Bay region, California. It consists mainly of a regressive sequence of high-energy, barred nearshore marine sediments deposited during the last (Sangamonian) highstand of sea level. This sequence can be sub-divided into several depth-dependent facies on the basis of paleo-current data and vertical sequence of sedimentary structures. These include a lower shoreface facies deposited in 10–16 m water depth, an upper shoreface facies (including both a storm-dominated assemblage and a surf zone assemblage) deposited in 0–10 m water depth, and a foreshore facies deposited in the swash zone, up to 3.5 m above high tide.

The magnitudes of the storm events responsible for depositing these sediments were estimated by calculating paleo-wave heights using a variety of criteria (e.g., critical threshold equations, breaker depths, berm heights). In addition, the climate and paleogeography during the deposition of these sediments were essentially the same as today, allowing the use of present-day wave statistics to estimate the frequency of these storm events. The largest storms formed offshore-flowing currents (e.g., rip, wind-forced, and possibly storm-surge ebb currents) that resulted in the deposition of approximately 30% of the sediments seaward of the surf zone; however, the magnitude and frequency of these events are unknown. The remaining 70% of the sediment beyond the surf zone was deposited in response to smaller storm waves which were, on the average, at least 1.6 m high; such waves presently occur no more than 15% of the time. Sediments deposited during “fairweather” conditions (i.e., the remaining 85% of the time) have a low preservation potential, and are generally not preserved in this facies. In contrast, surf zone sediments were deposited by a variety of processes associated with waves whose maximum offshore heights were probably ≤ 2.2 m; such waves presently occur up to 92% of the time. Sediments within the swash zone were deposited by waves up to 3 m high, the largest of which presently occur approximately 2% of the time.

Most of the sediments were deposited by storms of intermediate magnitude and frequency; different facies, however, appear to preferentially record events of different recurrence intervals. In particular, surf zone sediments were deposited under relatively small storm and post-storm conditions, whereas sediments deposited farther offshore record increasingly larger, less frequent storm events. Relatively rare events (e.g., the 100 or 1000 yr events) do not appear to have significantly affected sedimentation in these nearshore environments.  相似文献   


3.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

4.
5.
Low-frequency waves in the surf and swash zones on various beach slopes are discussed using numerical simulations. Simulated surface elevations of both primary waves and low-frequency waves across the surf zone were first compared with experimental data and good agreement found. Low-frequency wave characteristics are then discussed in terms of their physical nature and their relationship to the primary wave field on a series of sea bottom slopes. Unlike primary waves, low-frequency wave energy increases towards the shoreline. Low-frequency waves in the surf and swash are a function of incident waves and the sea bottom slope and hence the saturation level of the surf zone. Wave energy on a gently sloping beach is dominated by low-frequency waves while primary waves play a significant role on a steep beach. Low-frequency wave radiation from the surf zone on a given beach depends on primary wave frequency and beach slope. However, a very poor correlation was found between surf similarity parameter and low-frequency wave radiation.  相似文献   

6.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

7.
本文提出海滩反递变纹层自下而上粒度由小到大,重矿物富集于纹层底部,它是前滨冲流“剪切分选”的产物。原生反递变纹层常被激浪破坏和再造,遇到后期加积海滩过程时,才能保存于海滩层理中。海滩层理的现场观测是研究海滩层理反递变纹层形成机理的重要方法之一。  相似文献   

8.
The morphological changes of multiple intertidal bars (ridges) on a macrotidal beach were examined under low-energy wave conditions during a spring-to-spring tidal cycle. The morphological response was coupled to the tidal water level variations and related residence times for swash processes and surf (breaking waves and bores) over the cross-shore profile. Spring tides induced a large spatial variation in water lines and small residence times for distinct processes. Neap tides narrowed the intertidal area and increased the time for certain processes to work on the sediment at one location. The observed morphological changes could be coupled to the stagnation of processes at a certain bar crest position. The action of surf (breaking waves and bores) played the major role in the onshore migration of the intertidal bars and the simultaneous erosion of the seaward flank. Swash action, responsible for the generation and migration of intertidal bars in microtidal settings, was not the dominant process in causing the observed morphological changes. Intertidal ridges on macrotidal beaches cannot be considered swash bars as suggested by most previous investigations into these morphological features.  相似文献   

9.
Abstract

On shingle beaches, changes in foreshore elevation and sediment distribution landward of the break point are produced largely by variations in the uprush and backwash of waves. However, very little is known about the forces active in this zone.

A field instrument system which senses and records some of the parameters thought to influence beach erosion and deposition in this zone has been constructed. The equipment is also suitable for the investigation of a number of other shore and nearshore processes including erosion on sandy and rocky shores, and flow processes affecting littoral biological communities.

In the swash zone two sensing heads, a dynamometer and a depth recorder, sense variations in uprush and backwash velocities, energies, discharges, and depths of flow. Both devices are electromechanical and are coupled to a recording unit on land by PVC‐insulated cable. The dynamometer (two force plates mounted back‐to‐back on a compression spring and coupled to variable resistances) has been calibrated, statically and in a flume, to obtain velocity determinations accurate to within 10 cm . sec?1 of true flow speed. Average swash zone velocities lie between 100 and 300 cm . sec?1.

A parallel‐wire resistance gauge mounted an a stilling tube records flow depths. As water level rises and falls in the tube it alters resistance in a control circuit. The land unit, amplifiers and a strip‐chart recorder, receives the output from the dynamometer and flow depth gauge. The recorder is equipped with a trip‐pen so that analysis of wave periods or other variables is possible in the field. With poles at known spacings across the shore and the trip‐pen records, velocity distributions across the swash zone can be obtained. Measurements of velocity made near the bed with the dynamometer can then be related to the local surface velocity profile.

Problems with the instrument system include inability to record velocities at several points simultaneously, and unreliable records of backwash parameters with low breakers on shingle beaches because of the small volume of flow and rapid percolation of water into the beach face.  相似文献   

10.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

11.
利用涌浪影响下短时段内的冲流带滩面高频高程数据和碎波带波流资料,在奇异谱分析(SSA)的基础上,对比研究了不同形态滩面的冲淤变化趋势、趋势分布形状、冲淤变化周期和冲淤变化强度,以及同一条剖面不同桩点间各因素间的变化关系;用交叉谱方法探索了每分钟滩面高频冲淤变化与碎波带长重力波间的作用关系。分析结果表明,滩角韵律地形引起的冲流分流作用促进了滩脊向滩谷的泥沙转运,冲流带滩面存在明显的长重力波频段的周期性冲淤振动,滩面冲淤振动强度由滩面下部向上部递减,碎波带长重力波对滩面高频冲淤变化起重要作用。  相似文献   

12.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

13.
R.Craig Shipp   《Marine Geology》1984,60(1-4):235-259
The depositional sedimentary structures and textures of a single-barred nearshore system on the Atlantic coast of eastern Long Island, New York, were studied along seven shore-normal transects. Data along these transects consisted of textural analysis of 160 sediment samples, temporal bedform observations, and 42 can cores for the analysis of sedimentary structures.

Six sedimentary subenvironments were observed, based on distinct combinations of sediment color and texture, bedforms, physical, and biogenic sedimentary structures, and benthic infaunal communities. The shoreface environment is divided into the upper shoreface, the longshore trough, and the longshore bar. The divisions of the inner shelf environment are the shoreface-inner shelf transition, the offshore, and the coarse-grained deposit. The first five subenvironments are arranged in bands parallel to the shoreline, whereas the coarse-grained deposit occurs in patches across the inner shelf.

The location of fair-weather wave base, coinciding with a reduction in slope (3.0–0.3°) from the shoreface to the inner shelf, is characterized by the cessation of debris surge in the troughs of ripples, the formation of a “rust layer” of microorganisms over the bedform surface, and a sediment color change caused by an increase in organic detritus. The sequence of bedforms and physical sedimentary structures observed in this system fits well with existing wave-generated (oscillatory) flow regime models. These models explain the observed sequences as a response to the degree of asymmetric flow created by shoaling waves. Distribution of biogenic structures and assemblages of infaunal organisms is influenced by the distance landward or seaward of fair-weather wave base.

The overall relationships of this nearshore system can then be summarized as a hypothetical prograding stratigraphic sequence. The entire sequence is underlain by organic-rich, bioturbated, offshore deposits. Overlying the offshore is the planar-laminated sediments of the transition. Grading upward from the transition are the cleaner, planar-laminated, seaward slope deposits of the longshore bar. Above this, is a distinct erosional surface indicating the base of the massive to cross-laminated coarse sediments of the longshore trough. Capping the sequence are the cross- to planar-laminated, clean sands of the upper shoreface and foreshore.  相似文献   


14.
The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport and design of coastal structures. An efficient numerical model based on the time-dependent mild-slope equation is presented in this paper for the estimation of wave deformation across the surf zone. This model incorporates an approximate nonlinear shoaling formula and an energy dissipation factor due to wave breaking to improve the accuracy of the calculation of wave height deformation prior to wave breaking and also in the surf zone. The model also computes the location of first wave breaking, wave recovery and second wave breaking, if physical condition permits. Good agreement is found upon comparison with experimental data over several one-dimensional beach profiles, including uniform slope, bar and step profiles.  相似文献   

15.
A four-year investigation of surf zone sedimentation at Presque Isle, Pennsylvania, was undertaken in preparation for the design of a segmented breakwater system. Sediment transport calculations were based on hind-cast annual wave power statistics and “calibrated” by known accretion rates at the downdrift spit terminus. 30,000 m3 of sediment reaches the peninsula annually from updrift beaches. The transport volume increases downdrift due to shoreface erosion and retreat of the peninsular neck. At the most exposed point on Presque Isle (the lighthouse) the annual transport is 209,000 m3. East of the lighthouse is a zone of net shoreface accretion as the longshore transport rate progressively decreases.

The downdrift variation in sediment supply, combined with increasing refraction and attenuation of the dominant westerly storm waves produce a systematic change in prevailing surf zone morphology. Storms produce a major longshore bar and trough along the exposed peninsular neck. The wave energy during non-storm periods is too low to significantly alter the bar which consequently becomes a permanent feature. The broad shoreface and reduced wave energy level east of the lighthouse produce a morphology characterized by large crescentic outer bars, transverse bars, and megacusps along the beach. At the sheltered and rapidly prograding eastern spit terminus the prevalent beach morphology is that of a ridge and runnel system in front of a megacuspate shore.

The morphodynamic surf zone model developed for oceanic beaches in Australia is used as a basis for interpretation of shoreface morphologic variability at Presque Isle. In spite of interference by major shoreline stabilization structures, and differences between oceanic and lake wave spectra, the nearshore bar field at Presque Isle does closely correspond to the Australian model.  相似文献   


16.
利用涌浪影响下短时段内的冲流带滩面高频高程数据和碎波带波流资料,在奇异谱分析(SSA)的基础上,以比研究了不同形态滩面的冲淤变化趋势、趋势分布形状、冲淤变化周期和冲淤变化强度,以及同一条剖面不同桩点间各因素间的变化关系;用交叉谱方法探索了每分钟滩面高频冲淤变化与碎波带长重力波间的作用关系.分析结果表明,滩角韵律地形引起的冲流分流作用促进了滩脊向滩谷的泥沙转运,冲流带滩面存在明显的长重力波频段的周期性冲淤振动,滩面冲淤振动强度由滩面下部向上部递减,碎波带长重力波对滩面高频冲淤变化起重要作用.  相似文献   

17.
冲流带海滩高频振动探讨   总被引:3,自引:0,他引:3  
在粤东汕尾寮嘴口岬间海滩冲流带设置两条剖面,利用2003年10月13日一个潮周期实测高频剖面数据(采样间隔为1min和6min),分析了海滩的高频振动特征。并结合同期实测碎波带水位波动,探讨了海滩高频振动的动力原因。分析表明,此海滩过程主要以堆积为主,并表现有显著周期的振动:其日内变化受潮汐控制,表现为涨潮堆积、落潮侵蚀;波能对海滩高频振动过程有着重要的影响。  相似文献   

18.
《Coastal Engineering》2005,52(6):497-511
A weakly non-linear Boussinesq model with a slot-type shoreline boundary is used to simulate swash oscillations on beaches. Numerical simulations of swash were compared with laboratory measurements and in general good agreement found (less than 15% root-mean-square error of surface elevation except in regular waves). A series of numerical experiments on shoreline movement were then performed for a range of beach slopes and incident wave conditions. The resulting swash characteristics are then discussed in terms of their physical nature and spectral properties. On steep slopes, both individual bores and infragravity waves are equally significant in driving the swash while infragravity waves alone drive them on mild slopes. Swash excursions on any given slope are found to be highest when individual bores from a partially saturated surf zone ride on top of low-frequency waves. This is confirmed by the relationship found between swash excursion and wave groupiness in the surf zone. Swash excursions increase with increasing incident wave energy, even in fully saturated surf zones. However, a poor correlation is found between swash excursion and the surf similarity parameter due to the involvement of infragravity wave energy in the swash.  相似文献   

19.
A two-dimensional vertical (2DV) non-hydrostatic boundary fitted model based on a Godunov-type shock-capturing scheme is introduced and applied to the simulation of waves from deep water up to the swash zone. The effects of shoaling, breaking, surf zone dissipation and swash motions are considered. The application of a Godunov-type shock-capturing algorithm together with an implicit solver on a standard staggered grid is proposed as a new approach in the 2DV simulation of large gradient problems such as wave breaking and hydraulic jumps. The complete form of conservative Reynolds averaged Navier–Stokes (RANS) equations are solved using an implicit finite volume method with a pressure correction technique. The horizontal advection of the horizontal velocity is solved by an explicit predictor–corrector method. Fluxes are predicted by an exact Riemann solver and corrected by a downwind scheme. A simple total variation diminishing (TVD) method with a monotonic upstream-centered scheme for conservation laws (MUSCL) limiter function is employed to eliminate undesirable oscillations across discontinuities. Validation of the model is carried out by comparing the results of the simulations with several experimental test cases of wave breaking and run-up and the analytical solution to linear short waves in deep water. Promising performance of the model has been observed.  相似文献   

20.
Hurricane- or storm-generated swell waves may cause erosion and deposition along coasts which are situated thousands of kilometers outside the generating wind field. Marked beach erosion, caused by such swell waves, was observed along the micro-tidal west coast of Aruba. During the process of erosion a swash bar was formed, which moved up-beach during the waxing part of the swell event. The swash bar welded to the beach during the waning part of the event. Rapid sedimentation occurred on the upper beach. Finally, recovery of the beach was observed. The formation of a swash bar was attributed to an erosive, dissipative interval of a normally accretionary reflective beach. The sedimentary structures, although generally in line with observations on other beaches, show several peculiar characteristics: (1) the great thickness of the laminae in these calcareous sands; (2) the succession of low-angle sigmoidal and tangential sets in the swash bar; (3) the relatively steep erosional lower set boundaries and the wedge-shaped lamination in the successive stages of beach recovery; and (4) the several types of deformation structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号