首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
皖北地区对流层顶气象特征分析   总被引:2,自引:0,他引:2  
利用阜阳高空气象站2007—2011年08时的对流层顶气象资料,运用统计学方法,对皖北地区两类对流层顸的气象特征进行分析。结果表明:极地类对流层顶与热带类对流层顶大部分时间并存于皖北地区上空,7、8、9月极地类对流层顶消失;热带类对流层顶的高度先扬后抑,5月最高,11月最低,温度先降后升,12月最高,9月最低;极地类对流层顶的高度上半年不断抬高,下半年依次走低,温度年头高、年中低;两类对流层顶季节性特征的变化大体上呈正相关关系,极地类对流层顸季节性变化较大。  相似文献   

2.
利用华南地区14个站点2010年1月1日至2015年12月31日六年逐日的L波段探空资料,对华南地区对流层顶、边界层顶的时空分布特征及其高度的变化特征进行分析。结果表明,华南地区平均对流层顶高度5月最高,8月最低,对流层顶的变化与夏季风爆发的时间节点有较好的对应;平均边界层顶高度3月最高,8月最低,沿海站点与内陆站点边界层顶高度变化规律明显不同;华南地区四季的平均边界层高度的空间分布与对流层顶高度的空间分布反相,西沙上空与广西西北部两块区域始终存在极值中心。  相似文献   

3.
甘肃省对流层顶高度的季节变化特征分析   总被引:5,自引:0,他引:5  
杨双艳  周顺武  陈鹤 《气象》2010,36(4):57-62
根据甘肃省8个探空站25年(1980—2004年)的对流层顶观测资料,分析了第一对流层顶和第二对流层顶高度的季节变化特征,结果表明:(1)全省各站全年各月均可观测到复合对流层顶,两类对流层顶存在着明显的季节差异,冬(夏)季以第一(二)对流层顶为主。(2)第一对流层顶的平均高度在春、秋(冬、夏)季相对较高(低),年变化曲线呈双峰型;第二对流层顶的平均高度在春、夏(秋、冬)季相对较高(低),年变化表现出单峰型。(3)两类对流层顶高度均存在明显的年际变化,除秋季外,各个季节第一(二)对流层顶普遍存在5~6 a(准3 a)的周期振荡。(4)近25年来甘肃省两类对流层顶主要以上升趋势为主,特别是在夏季两类对流层顶高度均存在明显的上升趋势。  相似文献   

4.
利用2006年湖北省宜昌市高空观象台基于GFE(L)1型二次测风雷达观测的高空探测资料,分析了该地区对流层顶高度、对流层内温度、风等要素的季节特征.分析结果表明:这些要素显现出明显的季节差异,对流层顶高度在冬季最高,春、夏、秋依次减小;对流层顶温度夏季最低,冬季最高,春秋介于两者之间;对流层内的温度变化主要受太阳短波辐射的影响,不仅有明显的季节变化,且日变化显著;对流层的底层风速基本在10 m/s以内,风速随高度递增,春秋冬季在12 km左右达到一个极值;近地面风向变化大,以上的对流层内夏季变化大,春秋冬盛行西风.  相似文献   

5.
青海省对流层顶若干统计特征   总被引:4,自引:0,他引:4  
主要利用青海省7个探空站1970~2001年高空观测资料,运用统计学方法,对各站各类对流层顶的时空分布、季节变化和趋势等进行了分析,揭示了对流层顶的分布特征及其高度、温度变化的基本事实和规律。结果表明:由于不同类型对流层顶在各站的位置随着季节有明显的南北进退,因此,出现频率各异;两类对流层顶的高度不仅有明显的差异,而且还具有明显的季节性变化,极地类对流层顶高度在春季最高,夏季最低,而热带类对流层顶高度在夏季最高,秋季最低;最高对流层顶与低温相对应,最低对流层顶与高温相对应;热带类对流层顶年平均高度变化呈上升趋势,年平均温度变化呈下降趋势。这与近几年来,平流层内臭氧减少,温度降低,对流层高度抬升有关。  相似文献   

6.
辽宁地区第一对流层顶高度变化特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
本文利用趋势分析、突变分析以及小波分析等方法对近42 a辽宁南部(大连)和北部(沈阳)第一对流层顶高度变化特征进行分析和比较,结果表明:近42 a,辽宁第一对流层顶高度除冬季以外其它三季和年呈下降趋势,南部地区的降幅明显大于北部;多年均值的年变化表现为在夏季最高、春秋季次之、冬季最低,各个季节南部高度值普遍高于北部;年际变化幅度在夏季最大,除冬季外,南部大于北部;发生气候突变的时段基本上都在1970年代中期前后;周期变化特征时空差异较大。  相似文献   

7.
本利用青海省7个探空站1970—2001年高空观测资料,运用统计学方法,对各站各类对流层顶的时空分布、季节变化和趋势等进行了分析,揭示了对流层顶的分布特征及其高度、温度变化的基本事实和规律。结果表明:由于不同类型对流层顶在各站的位置随着季节有明显的南北进退,因此,出现频率各异;两类对流层顶的高度不仅有明显的差异,而且还具有明显的季节性变化,极地类对流层顶高度在春季最高,夏季最低,而热带类对流层顶高度在夏季最高,秋季最低;最高对流层顶与低温相对应,最低对流层顶与高温相对应;热带类对流层顶年平均高度变化呈上升趋势,年平均温度变化呈下降趋势。  相似文献   

8.
陈兴芳 《气象》1993,19(8):3-7
近40年赤道太平洋和北太平洋月平均海温距平场分布存在着短期气候振动,分析表明,它对大气环流有一定的影响。在海温气候振动的前期位相时期,对流层平均高度有降低趋势,相反在海温气候振动的后期位相时期,对流层平均高度为增高趋势。这种相关关系高层比低层要好,低纬度较中高纬度稳定,夏季较冬季明显。  相似文献   

9.
青藏高原两类对流层顶高度的季节变化特征   总被引:2,自引:0,他引:2  
根据青藏高原地区14个探空站近30 a(1979—2008年)的对流层顶逐日观测资料,分析了该地区上空热带对流层顶(第二对流层顶)和极地对流层顶(第一对流层顶)出现的频率及高度的季节变化特征。结果表明:(1)高原全年均可观测到第二对流层顶,其中在暖季(6—10月)第二对流层顶占绝对主导地位,而在其余月份则以复合对流层顶为主;(2)两类对流层顶高度在季节变化上存在着明显的差异,第一对流层顶高度在春秋(夏冬)季偏高(低),第二对流层顶高度在春夏(秋冬)季偏高(低),即第一(二)对流层顶高度的年变化曲线呈双(单)峰型;(3)两类对流层顶高度均存在明显的年际变化,第一(二)对流层顶高度除秋季存在准3.6 a(6 a)的周期变化外,其余季节均具有4.5~6 a(2~4 a)的振荡周期;(4)近30 a来高原第一(二)对流层顶主要表现出下降(上升)的趋势,尤其是第二对流层顶高度在冬、春季存在着明显的上升趋势。  相似文献   

10.
近51年我国对流层顶高度的变化特征   总被引:3,自引:0,他引:3  
刘慧  韦志刚  魏红  李振朝  王超 《高原气象》2012,31(2):351-358
利用NCEP/NCAR的对流层顶气压多年月平均和逐月平均再分析资料,运用EOF和REOF方法对近51年中国对流层顶高度的空间分布和时间演变特征进行了详细分析。结果表明,中国地区热带对流层顶(第二对流层顶)和极地对流层顶(第一对流层顶)的边界线,2月最南,8月最北,较高的热带对流层顶从2月开始,逐渐北进,8月到达最北界(44°N附近),然后开始南退,2月其北界处于最南端,在29°~30°N附近;我国29°~44°N之间的中纬度地区,对流层顶高度的年变化幅度较大;对流层顶高度场有三种主要的模态:第一种为全区一致的偏高(偏低)型;第二种为南高(低)北低(高)的南北相反分布型;第三种为南北地区-中部地区相反分布型。对对流层顶高度场进行REOF分解可将中国地区分为6个气候分区,即华南区、新疆区、东北区、华北区、长江流域区和青藏高原区,各区对流层顶高度最大值一般都出现在夏季,最小值出现在冬季,只有华南区的最大值出现在春季,最小值出现在夏季。中国地区对流层顶高度的年际变化和长期趋势具有十分明显的区域性。  相似文献   

11.
近60a来洞庭湖区气温的变化特征   总被引:1,自引:1,他引:1  
以洞庭湖区24个气象站1952-2010年的平均气温资料为基础,利用气候倾向率、Mann-Kendall突变检验法和小波分析等方法,分析了洞庭湖区的气温变化特征.结果表明:洞庭湖区年平均、冬季、春季和秋季气温均呈显著上升趋势,增温速率尤以冬季和春季为甚.除夏季外,年平均和其他各季气温在1990s,先后发生增温性突变.高温日数呈上升趋势,但显著性不明显,低温日数下降趋势非常显著.除夏季外,年平均和各季异常冷年,基本出现在1950s至1970s,异常暖年,均出现在1998年以后.除夏季外,各季气温均存在准9a周期.  相似文献   

12.
In this research, tropopause temperature (TT) and tropopause geopotential height (TGH) over the inner-core and environmental regions of all tropical cyclones (TCs) over the northwest of the Indian Ocean (NWIO) from 1990 to 2019 were investigated. To this aim, observational/analysis/reanalysis data and also simulated data from both historical and Representative Concentration Pathway 8.5 (RCP8.5) experiments of some global climate models (GCMs) from the Coupled Model Intercomparision Project (CMIP5) were used. Dynamical and thermo-dynamical environmental factors controlling TC, together with their correlation with different phases of some climatic indices were considered. Results indicated that the eastern part of the NWIO was more favorable for TC genesis and intensification.Lower-level stratospheric (upper-level tropospheric) cooling (warming) was detected over the NWIO during 1990−2019. Over the both inner-core and environmental regions of the NWIO TCs, the coldest tropopause occurred at a CS-Category and the warmest tropopause happened at the first stage of a VSCS event. Over the inner-core (environmental) region, the highest tropopause was detected at the first stage of a CS event (at the end of a VSCS life cycle). A significant majority of the used CMIP5 GCMs produced stratospheric cooling and tropospheric warming trends over the NWIO, similar to those obtained using ERA5 reanalysis dataset. Finally, the decreasing trend of TT over the both inner-core and environmental regions of NWIO TCs together with temperature decreasing trend obtained from the CMIP5 GCMs simulations suggest that the NWIO is prone to experience more TCs, especially the intense ones, in the future.  相似文献   

13.
1961-2000年辽宁夏季高温气候变化特征   总被引:2,自引:1,他引:2  
根据1961—2000年辽宁22个代表站夏季高温资料,采用小波分析等统计方法和天气学方法,分析了辽宁夏季高温的年际变化、年代际变化及周期特征。结果表明:辽宁夏季高温出现地域特征明显,年际变化较大,具有12-15 a周期变化。利用NCEP资料得出,夏季高温日数出现异常多、少年的同期500 hPa环流形势具有明显不同。  相似文献   

14.
北上热带气旋气候特征分析   总被引:2,自引:1,他引:2  
北上热带气旋是影响我国华北和东北地区的重要天气系统,其带来的大风和暴雨,常常造成我国北方地区的风灾和水灾。利用建国以来56 a的气象资料,对影响我国的北上热带气旋进行气候分析。结果表明:从时间上看,平均每年约有3个北上热带气旋,最早出现在5月下旬,最晚出现在11月中旬,其中以7月和8月为最多;每年6—9月为北上热带气旋登陆季节,7月和8月登陆的热带气旋占85%。从强度上看,能够到达北方的热带气旋一般都是较强的热带气旋,在进入北上热带气旋定义区后,总体强度明显减弱,但在进入黄渤海时仍能够达到台风的强度;与北上热带气旋相比,北上登陆热带气旋的强度更大。统计分析发现,在辽宁和华北登陆的热带气旋,其强度大于在山东半岛登陆的热带气旋。北上登陆热带气旋和北转向、中转向的热带气旋一般均能产生暴雨和大风。  相似文献   

15.
The spatio-temporal variation of the tropopause height (TH) over the Indian region (5°N-35°N, 70°E-95°E) has been studied using monthly mean TH data, for 22-year period, 1965 to 1986. The study revealed that the stations south of 20° showed maximum TH in April / May and minimum in September. This variation in TH has been attributed to the corresponding variation of average sea surface temperature (SST) over ± 20° latitudinal belt over Indian Ocean, Arabian Sea and Bay of Bengal. Further the stations north of 20°N showed maximum in June and minimum in October/ November. This maximum in TH has primarily been attributed to the increased insolation and convection. Furthermore it is noticed that the anomaly of TH moved northwards during the period April to July.The interannual variability of the Indian Summer Monsoon Activity (ISMA) has been studied in relation to all India mean TH (at 12 GMT) for six months April through September. The composites of mean TH for good and bad monsoon years showed that  相似文献   

16.
1957~2004年盘锦芦苇湿地的气候变化特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用1957~2004年盘锦湿地常规气象资料,分析了盘锦湿地的日照、温度、降水和风速的变化特征。结果表明:日照时数的月变化呈双峰曲线,5月和9月表现为日照高峰,7月为日照低谷;近48 a盘锦湿地的年平均气温呈显著的上升趋势,冬季增温最明显,其次为春季,夏季增温最弱,年平均极端最低温度呈显著的上升趋势;近48 a的年平均风速呈显著的下降趋势,月平均风速变化趋势呈双峰曲线。  相似文献   

17.
对1961—2008年银川市灰霾天气日数资料进行分析。结果表明:银川市灰霾天气呈逐渐增加的趋势2,0世纪80年代前为缓慢增加阶段,20世纪后灰霾天气显著增加2,000年后灰霾天气急剧增加。银川市灰霾日数最多为12月,其次为11月,最少为5月,呈现出冬季大于秋季大于春季大于夏季的季节特征。一般情况下,银川市灰霾日数持续1—3d,持续2d及以上的灰霾天气占17%,持续5d及以上的灰霾天气占1%。持续时间较长的灰霾天气集中出现在冬季11月至翌年2月。灰霾天气持续时间与年代际变化有关,2000年前,银川未出现持续5d以上的灰霾天气过程;2000年后,随着灰霾天气日数增多,灰霾持续时间延长。  相似文献   

18.
北太平洋爆发性气旋的气候特征   总被引:4,自引:2,他引:4       下载免费PDF全文
利用1968—1987年的海平面天气图资料,分析了爆发性气旋的气候特点。主要内容有:爆发性气旋的发生频率,频率的时间分布,地理分布,大风强度及分布方位、气旋爆发前后的大风、中心气压、加深率等要素的变化。  相似文献   

19.
利用1951~2017年我国西南地区26个台站的降水观测资料,本文研究了该地区春季及其各月降水的基本气候特征。结果表明:5月是春季我国西南地区降水最多的月份,其占春季总降水的55.3%,此外,5月降水年际变化强度最大;西南地区春季及其各月降水均具有显著的年代际变化特征,5月降水在春季降水的年代际变化特征中占据主导地位;在年代际突变特征方面,西南地区春季降水存在显著的年代际突变特征,其在1970年代后期发生了减少突变,而在1990年代中后期发生了增加突变;在变化趋势方面,春季西南区域平均降水的变化趋势不明显,但从空间上看,西南地区东部表现出显著增多的趋势,而西部则表现出显著减少的趋势;在周期方面,西南地区春季及其4~5月降水均具有显著的年际和年代际变化周期,需要说明的是,3月降水没有明显的年代际变化周期,总体上看,5月降水在春季降水周期变化中占据主导地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号